Tumor Biology

, Volume 37, Issue 9, pp 12609–12618 | Cite as

Aberrant DNA methylation of acute myeloid leukemia and colorectal cancer in a Chinese pedigree with a MLL3 germline mutation

  • Fuhua Yang
  • Qiang Gong
  • Wentao Shi
  • Yunding Zou
  • Jingmin Shi
  • Fengjiang Wei
  • Qingrong Li
  • Jieping Chen
  • Wei-Dong Li
Original Article


Unlike genetic aberrations, epigenetic alterations do not modify the deoxyribonucleic acid (DNA) coding sequence and can be reversed pharmacologically. Identifying a particular epigenetic alteration such as abnormal DNA methylation may provide better understanding of cancers and improve current therapy. In a Chinese pedigree with colorectal carcinoma and acute myeloid leukemia, we examined the genome-wide DNA methylation level of cases and explored the role of methylation in pathogenesis and progression. DNA methylation status in the four cases, which all harbor a MLL3 germline mutation, differed from that of the normal control, and hypermethylation was more prevalent. Also, more CpG sites were hypermethylated in the acute-phase AML patient than in the AML patient in remission. Fifty-nine hyper- or hypomethylated genes were identified as common to all four cases. Genome-wide DNA methylation analysis demonstrated that differentially methylated sites among acute myeloid leukemia and colorectal carcinoma cases and the control were in both promoters (CpG island) and gene body regions (shelf/shore areas). Hypermethylation was more prevalent in cancer cases. The study supports the suggestion that the level of DNA methylation changes in AML progression.


Acute myeloid leukemia Colorectal cancer DNA methylation 



We thank all subjects who donated blood samples for genetic research purposes. This work was supported in part by grant 81070576 from the National Natural Science Foundation of China and grant 12JCZDJC24700 from Tianjin Municipal Science and Technology Commission to W.-D.L.; and by National Natural Science Foundation of China (NSFC 81270605,30971066,81470324), Third Military Medical University Clinical and Science Great Fund Project (2102XLC03), Chongqing Postgraduate Education Reform Project (yjg123114), Chongqing Natural Science Fund Project (CSTC’2008BA5001), and Military Emphasis Medical Scientific Research Project Fund to J.-P.C.

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_5130_MOESM1_ESM.docx (12 kb)
Supplement table 1 (DOCX 11 kb)
13277_2016_5130_MOESM2_ESM.docx (14 kb)
Supplement table 2 (DOCX 13 kb)
13277_2016_5130_MOESM3_ESM.docx (18 kb)
Supplement table 3 (DOCX 18 kb)
13277_2016_5130_Fig6_ESM.gif (29 kb)
Supplement figure 1

Differentially methylated sites at enhancers. (GIF 29 kb)

13277_2016_5130_MOESM4_ESM.tif (7.8 mb)
High resolution image (TIFF 7978 kb)
13277_2016_5130_Fig7_ESM.gif (188 kb)
Supplement figure 2

Association between the hypermethylated CpG sites and the expression levels of their respective genes in AML cases from the TCGA database. Data are presented as linear regression (solid straight line) graph and 95 % confidence interval (dotted line). (A) cg05995465 and HDAC4; (B) cg08466517 and TNIP3; (C) cg06758191 and AFAP1; (D)cg17704839 and UBL5. (GIF 187 kb)

13277_2016_5130_MOESM5_ESM.tif (40.7 mb)
High resolution image (TIFF 41668 kb)


  1. 1.
    Momparler RL, Bovenzi V. DNA methylation and cancer. J Cell Physiol. 2000;183(2):145–54. doi: 10.1002/(SICI)1097-4652(200005)183:2<145::AID-JCP1>3.0.CO;2-V.CrossRefPubMedGoogle Scholar
  2. 2.
    Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9. doi: 10.1038/30764. CrossRefPubMedGoogle Scholar
  3. 3.
    Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, Wolffe A, et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol CB. 2000;10(14):853–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Plass C, Oakes C, Blum W, Marcucci G. Epigenetics in acute myeloid leukemia. Semin Oncol. 2008;35(4):378–87. doi: 10.1053/j.seminoncol.2008.04.008. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boultwood J, Wainscoat JS. Gene silencing by DNA methylation in haematological malignancies. Br J Haematol. 2007;138(1):3–11. doi: 10.1111/j.1365-2141.2007.06604.x. CrossRefPubMedGoogle Scholar
  6. 6.
    Melnick AM. Epigenetics in AML. Best Pract Res Clin Haematol. 2010;23(4):463–8. doi: 10.1016/j.beha.2010.09.017. CrossRefPubMedGoogle Scholar
  7. 7.
    Sakai E, Nakajima A, Kaneda A. Accumulation of aberrant DNA methylation during colorectal cancer development. World J Gastroenterol WJG. 2014;20(4):978–87. doi: 10.3748/wjg.v20.i4.978. CrossRefPubMedGoogle Scholar
  8. 8.
    Li WD, Li QR, SN X, Wei FJ, Ye ZJ, Cheng JK, et al. Exome sequencing identifies an MLL3 gene germ line mutation in a pedigree of colorectal cancer and acute myeloid leukemia. Blood. 2013;121(8):1478–9. doi: 10.1182/blood-2012-12-470559. CrossRefPubMedGoogle Scholar
  9. 9.
    Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95. doi: 10.1146/annurev-biochem-051710-134100. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 2011;43(9):875–8. doi: 10.1038/ng.907. CrossRefPubMedGoogle Scholar
  11. 11.
    Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, et al. The genetic landscape of the childhood cancer medulloblastoma. Science. 2011;331(6016):435–9. doi: 10.1126/science.1198056. CrossRefPubMedGoogle Scholar
  12. 12.
    Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4. doi: 10.1038/ng.2246. CrossRefPubMedGoogle Scholar
  13. 13.
    Dolnik A, Engelmann JC, Scharfenberger-Schmeer M, Mauch J, Kelkenberg-Schade S, Haldemann B, et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood. 2012;120(18):e83–92. doi: 10.1182/blood-2011-12-401471. CrossRefPubMedGoogle Scholar
  14. 14.
    Chen C, Liu Y, Rappaport AR, Kitzing T, Schultz N, Zhao Z, et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell. 2014;25(5):652–65. doi: 10.1016/j.ccr.2014.03.016. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74(12):3238–47. doi: 10.1158/0008-5472.CAN-14-0013. CrossRefPubMedGoogle Scholar
  16. 16.
    Je EM, Lee SH, Yoo NJ. Mutational and expressional analysis of MLL genes in gastric and colorectal cancers with microsatellite instability. Neoplasma. 2013;60(2):188–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Balakrishnan A, Bleeker FE, Lamba S, Rodolfo M, Daniotti M, Scarpa A, et al. Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res. 2007;67(8):3545–50. doi: 10.1158/0008-5472.CAN-07-0065. CrossRefPubMedGoogle Scholar
  18. 18.
    Huhn S, Bevier M, Pardini B, Naccarati A, Vodickova L, Novotny J, et al. Colorectal cancer risk and patients’ survival: influence of polymorphisms in genes somatically mutated in colorectal tumors. Cancer Causes Control CCC. 2014;25(6):759–69. doi: 10.1007/s10552-014-0379-1. CrossRefPubMedGoogle Scholar
  19. 19.
    Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK. The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res. 2002;30(4):958–65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wachter E, Quante T, Merusi C, Arczewska A, Stewart F, Webb S, et al. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. eLife. 2014;3:e03397. doi: 10.7554/eLife.03397. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    YY Y, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil Steril. 2015;104(1):145–53 e6. doi: 10.1016/j.fertnstert.2015.04.005. CrossRefGoogle Scholar
  22. 22.
    Mansfield AS, Wang L, Cunningham JM, Jen J, Kolbert CP, Sun Z, et al. DNA methylation and RNA expression profiles in lung adenocarcinomas of never-smokers. Cancer Genet. 2015;208(5):253–60. doi: 10.1016/j.cancergen.2014.12.002. CrossRefPubMedGoogle Scholar
  23. 23.
    Lou S, Lee HM, Qin H, Li JW, Gao Z, Liu X, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15(7):408. doi: 10.1186/s13059-014-0408-0. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Melki JR, Vincent PC, Clark SJ. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res. 1999;59(15):3730–40.PubMedGoogle Scholar
  25. 25.
    Deneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, et al. Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia. 2010;24(5):932–41. doi: 10.1038/leu.2010.41. CrossRefPubMedGoogle Scholar
  26. 26.
    Zheng Q, Zeng TT, Chen J, Liu H, Zhang H, Su J. Association between DNA methyltransferases 3B gene polymorphisms and the susceptibility to acute myeloid leukemia in Chinese Han population. PLoS One. 2013;8(9):e74626. doi: 10.1371/journal.pone.0074626. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Khare S, Verma M. Epigenetics of colon cancer. Methods Mol Biol. 2012;863:177–85. doi: 10.1007/978-1-61779-612-8_10. CrossRefPubMedGoogle Scholar
  28. 28.
    Ashktorab H, Brim HDNA. Methylation and colorectal cancer. Curr Colorectal Cancer Rep. 2014;10(4):425–30. doi: 10.1007/s11888-014-0245-2. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kloten V, Rose M, Kaspar S, von Stillfried S, Knuchel R, Dahl E. Epigenetic inactivation of the novel candidate tumor suppressor gene ITIH5 in colon cancer predicts unfavorable overall survival in the CpG island methylator phenotype. Epigenetics Off J DNA Methylation Soc. 2014;9(9):1290–301. doi: 10.4161/epi.32089. CrossRefGoogle Scholar
  30. 30.
    Li Q, Kopecky KJ, Mohan A, Willman CL, Appelbaum FR, Weick JK, et al. Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia. Clin Cancer Res Off J Am Assoc Cancer Res. 1999;5(5):1077–84.Google Scholar
  31. 31.
    Shimamoto T, Ohyashiki JH, Ohyashiki K. Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia. Leuk Res. 2005;29(6):653–9. doi: 10.1016/j.leukres.2004.11.014. CrossRefPubMedGoogle Scholar
  32. 32.
    Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21(3):430–46. doi: 10.1016/j.ccr.2011.12.029. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27. doi: 10.1016/j.ccr.2009.11.020. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Momparler RL, Cote S, Momparler LF. Epigenetic action of decitabine (5-aza-2′-deoxycytidine) is more effective against acute myeloid leukemia than cytotoxic action of cytarabine (ARA-C). Leuk Res. 2013;37(8):980–4. doi: 10.1016/j.leukres.2013.04.019. CrossRefPubMedGoogle Scholar
  35. 35.
    Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135(4):1079–99. doi: 10.1053/j.gastro.2008.07.076. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zoratto F, Rossi L, Verrico M, Papa A, Basso E, Zullo A, et al. Focus on genetic and epigenetic events of colorectal cancer pathogenesis: implications for molecular diagnosis. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6195–206. doi: 10.1007/s13277-014-1845-9. CrossRefGoogle Scholar
  37. 37.
    Chong S, Whitelaw E. Epigenetic germline inheritance. Curr Opin Genet Dev. 2004;14(6):692–6. doi: 10.1016/j.gde.2004.09.001. CrossRefPubMedGoogle Scholar
  38. 38.
    Burmeister DW, Smith EH, Cristel RT, McKay SD, Shi H, Arthur GL, et al. The expression of RUNDC3B is associated with promoter methylation in lymphoid malignancies. Hematol Oncol. 2015. doi: 10.1002/hon.2238. PubMedGoogle Scholar
  39. 39.
    Musialik E, Bujko M, Kober P, Wypych A, Gawle-Krawczyk K, Matysiak M, et al. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res. 2015;50(1):26–32. doi: 10.5045/br.2015.50.1.26. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shao LL, Fan J, Wang R, Feng LL, Zhen CQ, Sui XH, et al. Expression of TFPI-2 gene and its promoter methylation in acute myeloid leukemia. Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = J Exp Hematol / Chin Assoc Pathophysiol. 2014;22(4):920–6. doi: 10.7534/j.issn.1009-2137.2014.04.008. Google Scholar
  41. 41.
    Shaknovich R. Gene expression and epigenetic deregulation. Adv Exp Med Biol. 2013;792:133–50. doi: 10.1007/978-1-4614-8051-8_6. CrossRefPubMedGoogle Scholar
  42. 42.
    Gomes MV, Borges KS, Moreno DA, Queiroz RG, Machado HR, Carlotti Jr CG, et al. Abnormal methylation of histone deacetylase genes: implications on etiology and epigenetic therapy of astrocytomas. Anticancer Res. 2011;31(4):1337–43.PubMedGoogle Scholar
  43. 43.
    Mansego ML, Milagro FI, Zulet MA, Moreno-Aliaga MJ, Martinez JA. Differential DNA methylation in relation to age and health risks of obesity. Int J Mol Sci. 2015;16(8):16816–32. doi: 10.3390/ijms160816816. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001;22(10):1615–23.CrossRefPubMedGoogle Scholar
  45. 45.
    Issa JP, Zehnbauer BA, Civin CI, Collector MI, Sharkis SJ, Davidson NE, et al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Res. 1996;56(5):973–7.PubMedGoogle Scholar
  46. 46.
    Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood. 2000;95(10):3208–13.PubMedGoogle Scholar
  47. 47.
    Galm O, Wilop S, Luders C, Jost E, Gehbauer G, Herman JG, et al. Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia. Ann Hematol. 2005;84(Suppl 1):39–46. doi: 10.1007/s00277-005-0005-0. CrossRefPubMedGoogle Scholar
  48. 48.
    Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D, et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 2007;67(18):8511–8. doi: 10.1158/0008-5472.CAN-07-1016. CrossRefPubMedGoogle Scholar
  49. 49.
    Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(6):548–56. doi: 10.1200/JCO.2013.50.6337. CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Fuhua Yang
    • 1
  • Qiang Gong
    • 2
  • Wentao Shi
    • 1
  • Yunding Zou
    • 2
  • Jingmin Shi
    • 1
  • Fengjiang Wei
    • 1
  • Qingrong Li
    • 2
  • Jieping Chen
    • 2
  • Wei-Dong Li
    • 1
  1. 1.Research Center of Basic Medical SciencesTianjin Medical UniversityTianjinChina
  2. 2.Department of HematologySouthwest Hospital, Third Military Medical UniversityChongqingChina

Personalised recommendations