Advertisement

Tumor Biology

, Volume 37, Issue 9, pp 11623–11631 | Cite as

Role of long non-coding RNA in tumor drug resistance

Review

Abstract

Chemotherapy has been extensively used in tumor treatment, including either systemic or local treatment. Miserably, in many kinds of cancers, chemotherapy is gradually insensitive. The mechanisms of tumor drug resistance have been widely explored, yet have not been fully characterized. With several studies in the development of drug resistance, recent works have highlighted the involvement of non-coding RNAs in tumor development. A growing number of long non-coding RNAs (lncRNAs) have been identified as transcripts of larger than 200 nucleotides in length, which have low coding potential, but potentially coding small peptides with 50–70 amino acids. Despite so often being branded as transcriptional noise, it is becoming increasingly clear that a large number of lncRNAs are crucial molecular regulators of the processes of tumor involving the initiation and progression of human tumor. More recently, accumulating evidence is revealing an important role of lncRNA in tumor drug resistance and lncRNA expression profiling can be correlated with the evolution of tumor drug resistance. The long non-coding-RNA-mediated form of drug resistance brings yet another mechanism of drug resistance. So, exploiting the newly emerging knowledge of lncRNAs for the development of new therapeutic applications to overcome human tumor drug resistance will be significant.

Keyword

Long non-coding RNA Tumor Drug resistance 

Notes

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (No. 2014AA020604).

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system. Arch Pharm Res. 2014;37(1):4–15.CrossRefPubMedGoogle Scholar
  2. 2.
    Drinberg V, Bitcover R, Rajchenbach W, Peer D. Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Lett. 2014;354(2):290–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Geng M, Wang L, Chen X, Cao R, Li P. The association between chemosensitivity and Pgp, GST-pi and Topo II expression in gastric cancer. Diagn pathol. 2013;8:198.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19(R2):R152–61.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Guibert S, Zhao Z, Sjolinder M, Gondor A, Fernandez A, Pant V, et al. CTCF-binding sites within the H19 ICR differentially regulate local chromatin structures and cis-acting functions. Epigenetics. 2012;7(4):361–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Guo F, Guo L, Li Y, Zhou Q, Li Z. MALAT1 is an oncogenic long non-coding RNA associated with tumor invasion in non-small cell lung cancer regulated by DNA methylation. Int J Clin Exp Pathol. 2015;8(12):15903–10.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Messemaker TC, Frank-Bertoncelj M, Marques RB, Adriaans A, Bakker AM, Daha N, Gay S, Huizinga TW, Toes RE, Mikkers HM et al. A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels. Genes Immun. 2015.Google Scholar
  11. 11.
    Guo W, Liu S, Cheng Y, Lu L, Shi J, Xu G, Li N, Cheng K, Wu M, Cheng S et al. ICAM-1-related non-coding RNA in cancer stem cells maintains ICAM-1 expression in hepatocellular carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2015.Google Scholar
  12. 12.
    Wang Y, Li Z, Zheng S, Zhou Y, Zhao L, Ye H, et al. Expression profile of long non-coding RNAs in pancreatic cancer and their clinical significance as biomarkers. Oncotarget. 2015;6(34):35684–98.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Sun J, Song Y, Chen X, Zhao J, Gao P, Huang X, et al. Novel long non-coding RNA RP11-119F7.4 as a potential biomarker for the development and progression of gastric cancer. Oncol lett. 2015;10(1):115–20.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ding J, Li D, Gong M, Wang J, Huang X, Wu T, et al. Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. OncoTargets Ther. 2014;7:1625–30.CrossRefGoogle Scholar
  15. 15.
    Ip JY, Nakagawa S. Long non-coding RNAs in nuclear bodies. Develop Growth Differ. 2012;54(1):44–54.CrossRefGoogle Scholar
  16. 16.
    Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA. 2013;19(4):429–42.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008;22(6):756–69.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guo F, Li Y, Liu Y, Wang J, Li Y, Li G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin. 2010;42(3):224–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Gong C. Maquat LE: lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature. 2011;470(7333):284–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Feng S, Yao J, Chen Y, Geng P, Zhang H, Ma X, et al. Expression and functional role of reprogramming-related long noncoding RNA (lincRNA-ROR) in glioma. J Mol neurosci MN. 2015;56(3):623–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Hu L, Wu Y, Tan D, Meng H, Wang K, Bai Y, et al. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res CR. 2015;34:7.CrossRefPubMedGoogle Scholar
  22. 22.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Disc. 2011;1(5):391–407.CrossRefGoogle Scholar
  23. 23.
    Yang X, Xie X, Xiao YF, Xie R, Hu CJ, Tang B, et al. The emergence of long non-coding RNAs in the tumorigenesis of hepatocellular carcinoma. Cancer Lett. 2015;360(2):119–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen F, Tian Y, Pang EJ, Wang Y, Li L. MALAT2-activated long noncoding RNA indicates a biomarker of poor prognosis in gastric cancer. Cancer Gene Ther. 2015.Google Scholar
  25. 25.
    Han L, Zhang EB, Yin DD, Kong R, Xu TP, Chen WM, et al. Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis. 2015;6:e1665.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Emmrich S, Streltsov A, Schmidt F, Thangapandi VR, Reinhardt D, Klusmann JH. LincRNAs MONC and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer. 2014;13:171.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chiyomaru T, Yamamura S, Fukuhara S, Yoshino H, Kinoshita T, Majid S, et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One. 2013;8(8):e70372.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34(2):613–20.CrossRefGoogle Scholar
  29. 29.
    Wang Y, Chen W, Yang C, Wu W, Wu S, Qin X, et al. Long non-coding RNA UCA1a(CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol. 2012;41(1):276–84.PubMedGoogle Scholar
  30. 30.
    Tsang WP, Wong TW, Cheung AH, Co CN, Kwok TT. Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR. RNA. 2007;13(6):890–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nie W, Ge HJ, Yang XQ, Sun X, Huang H, Tao X, Chen WS, Li B. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett. 2015.Google Scholar
  32. 32.
    Zhang J, Zhang H, Chen L, da Sun W, Mao C, Chen W, et al. Tang JH: beta-elemene reverses chemoresistance of breast cancer via regulating MDR-related microRNA expression. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2014;34(6):2027–37.CrossRefGoogle Scholar
  33. 33.
    Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(11):10773–9.CrossRefGoogle Scholar
  34. 34.
    Ahn JH, Bahng H, Kim JG, Kim SB, Ahn SH, Chang H, et al. Retrospective analysis of the results of adjuvant chemotherapy in breast cancer patients with 10 or more positive nodes: nonrandomized comparison of adriamycin-containing regimens. Cancer Res Treat Off J Kor Cancer Assoc. 2002;34(2):84–90.Google Scholar
  35. 35.
    Jiang M, Huang O, Xie Z, Wu S, Zhang X, Shen A, et al. A novel long non-coding RNA-ARA: Adriamycin resistance-associated. Biochem Pharmacol. 2014;87(2):254–83.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhuang Y, Nguyen HT, Burow ME, Zhuo Y, El-Dahr SS, Yao X, et al. Elevated expression of long intergenic non-coding RNA HOTAIR in a basal-like variant of MCF-7 breast cancer cells. Mol Carcinog. 2015;54(12):1656–67.CrossRefPubMedGoogle Scholar
  37. 37.
    Xue X, Yang YA, Zhang A, Fong KW, Kim J, Song B, Li S, Zhao JC, Yu J. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene. 2015.Google Scholar
  38. 38.
    Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015;6(13):11652–63.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kobori O. International strategy in the struggle against gastric cancer. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 1998;1(1):1–2.Google Scholar
  40. 40.
    Xu W, Chen Q, Wang Q, Sun Y, Wang S, Li A, et al. JWA reverses cisplatin resistance via the CK2-XRCC1 pathway in human gastric cancer cells. Cell Death Dis. 2014;5:e1551.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang XW, Bu P, Liu L, Zhang XZ, Li J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 2015;462(3):227–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Hang Q, Sun R, Jiang C, Li Y. Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anti-Cancer Drugs. 2015;26(6):632–40.PubMedGoogle Scholar
  43. 43.
    Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol. 2014;34(17):3182–93.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Legge F, Ferrandina G, Salutari V, Scambia G. Biological characterization of ovarian cancer: prognostic and therapeutic implications. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2005;16(4):iv95–101.Google Scholar
  45. 45.
    Wang F, Zhou J, Xie X, Hu J, Chen L, Hu Q, et al. Involvement of SRPK1 in cisplatin resistance related to long non-coding RNA UCA1 in human ovarian cancer cells. Neoplasma. 2015;62(3):432–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Teschendorff AE, Lee SH, Jones A, Fiegl H, Kalwa M, Wagner W, et al. HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med. 2015;7(1):108.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chirovsky D, Lich KH, Barritt AS. Screening for hepatocellular carcinoma in chronic liver disease. Ann Intern Med. 2015;162(3):238–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144(3):512–27.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene. 2007;26(33):4877–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Schaefer U, Voloshanenko O, Willen D, Walczak H. TRAIL: a multifunctional cytokine. Front Biosci J Virtual Libr. 2007;12:3813–24.CrossRefGoogle Scholar
  51. 51.
    Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS, Jeong P, et al. Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol Cancer. 2010;9:3.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q, et al. Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun. 2012;425(2):468–72.CrossRefPubMedGoogle Scholar
  53. 53.
    Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J. 2014;281(7):1750–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Printz C. Colorectal cancer incidence increasing in young adults. Cancer. 2015;121(12):1912–3.CrossRefPubMedGoogle Scholar
  55. 55.
    Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23.CrossRefPubMedGoogle Scholar
  56. 56.
    Kye BH, Cho HM. Overview of radiation therapy for treating rectal cancer. Ann Coloproctol. 2014;30(4):165–74.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Xiong W, Jiang YX, Ai YQ, Liu S, Wu XR, Cui JG, et al. Microarray analysis of long non-coding RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Asian Pac J Cancer Prev APJCP. 2015;16(8):3395–402.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee H, Kim C, Ku JL, Kim W, Yoon SK, Kuh HJ, et al. A long non-coding RNA snaR contributes to 5-fluorouracil resistance in human colon cancer cells. Mol Cell. 2014;37(7):540–6.CrossRefGoogle Scholar
  59. 59.
    Yang Y, Li H, Hou S, Hu B, Liu J, Wang J. The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One. 2013;8(5):e65309.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cheng N, Li X, Zhao C, Ren S, Chen X, Cai W, et al. Microarray expression profile of long non-coding RNAs in EGFR-TKIs resistance of human non-small cell lung cancer. Oncol Rep. 2015;33(2):833–9.PubMedGoogle Scholar
  61. 61.
    Liu J, Wan L, Lu K, Sun M, Pan X, Zhang P, et al. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One. 2015;10(5):e0114586.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7(3):163–72.CrossRefPubMedGoogle Scholar
  63. 63.
    Burris 3rd HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15(6):2403–13.Google Scholar
  64. 64.
    Vernejoul F, Faure P, Benali N, Calise D, Tiraby G, Pradayrol L, et al. Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res. 2002;62(21):6124–31.PubMedGoogle Scholar
  65. 65.
    Li Z, Zhao X, Zhou Y, Liu Y, Zhou Q, Ye H, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer. J Transl Med. 2015;13:84.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    You L, Chang D, Du HZ, Zhao YP. Genome-wide screen identifies PVT1 as a regulator of gemcitabine sensitivity in human pancreatic cancer cells. Biochem Biophys Res Commun. 2011;407(1):1–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Moore DD, Luu HH. Osteosarcoma. Cancer Treat Res. 2014;162:65–92.CrossRefPubMedGoogle Scholar
  68. 68.
    Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang CL, Zhu KP, Shen GQ, Zhu ZS. A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma. Tumour Biol J Int Soc Oncodev Biol Med. 2015.Google Scholar
  70. 70.
    Zhu KP, Zhang CL, Shen GQ, Zhu ZS. Long noncoding RNA expression profiles of the doxorubicin-resistant human osteosarcoma cell line MG63/DXR and its parental cell line MG63 as ascertained by microarray analysis. Int J Clin Exp Pathol. 2015;8(8):8754–73.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Li W, Jia M, Qin X, Hu J, Zhang X, Zhou G. Harmful effect of ERbeta on BCRP-mediated drug resistance and cell proliferation in ERalpha/PR-negative breast cancer. FEBS J. 2013;280(23):6128–40.CrossRefPubMedGoogle Scholar
  72. 72.
    Liz J, Esteller M. lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta. 2015.Google Scholar
  73. 73.
    Gailhouste L, Ochiya T. Cancer-related microRNAs and their role as tumor suppressors and oncogenes in hepatocellular carcinoma. Histol Histopathol. 2013;28(4):437–51.PubMedGoogle Scholar
  74. 74.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Li JT, Wang LF, Zhao YL, Yang T, Li W, Zhao J, et al. Nuclear factor of activated T cells 5 maintained by Hotair suppression of miR-568 upregulates S100 calcium binding protein A4 to promote breast cancer metastasis. Breast Cancer Res BCR. 2014;16(5):454.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32(11):2858–68.CrossRefPubMedGoogle Scholar
  77. 77.
    Augoff K, McCue B, Plow EF. Sossey-Alaoui K: miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, et al. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One. 2014;9(1):e86295.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Heng Deng
    • 1
    • 2
    • 4
  • Jun Zhang
    • 2
    • 3
  • JinJun Shi
    • 4
  • ZhengDong Guo
    • 5
  • ChunRong He
    • 4
  • Li Ding
    • 2
  • Jin Hai Tang
    • 2
  • Yong Hou
    • 6
  1. 1.Graduate SchoolAnhui University of Traditional Chinese MedicineHeFeiChina
  2. 2.Department of General SurgeryNanjing Medical University Affiliated Cancer Hospital, Cancer Institute of JiangsuNanjingChina
  3. 3.Surgery of Traditional Chinese Medicine Research InstituteAnhui University of Traditional Chinese MedicineHeFeiChina
  4. 4.The People Hospital of SuSongSuSongChina
  5. 5.Graduate SchoolXuzhou Medical CollegeXuzhouChina
  6. 6.Department of General SurgeryThe First Affiliated Hospital of Anhui University of Traditional Chinese MedicineHeFeiChina

Personalised recommendations