Tumor Biology

, Volume 37, Issue 9, pp 12089–12102 | Cite as

Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response

  • Shishir Kumar Gupta
  • Pavan Kumar Yadav
  • A. K. Tiwari
  • Ravi Kumar Gandham
  • A. P. Sahoo
Original Article


The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.


Apoptosis NS1 Poly (I:C) TLR3 Breast cancer Cancer vaccine adjuvant Anti-tumor immune response 



The authors are thankful to the Director, Indian Veterinary Research Institute, Izatnagar-243 122, UP, India, for providing necessary facilities and National Agricultural Innovative Project (reference C4/C3001) for providing funding to carry out the work. We are also thankful to Dr. Rajendra Singh, Head, Division of Veterinary Pathology and to Dr. K.P. Singh for providing facilities to perform histopathology and immunohistochemistry.

Compliance with ethical standards

The experiments were carried out as per the guidelines and approval of the Institute Animal Ethics Committee and Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Conflicts of interest



  1. 1.
    Mincberg M, Gopas J, Tal J. Minute virus of mice (MVMp) infection and NS1 expression induce p53 independent apoptosis in transformed rat fibroblast cells. Virology. 2011;412(1):233–43.CrossRefPubMedGoogle Scholar
  2. 2.
    Hristov G, Kramer M, Li J, El-Andaloussi N, Mora R, Daeffler L, Zentgraf H, Rommelaere J, Marchini A. Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol. 2010;84(12):5909–22.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bar S, Rommelaere J, Nuesch JP. Vesicular transport of progeny parvovirus particles through ER and Golgi regulates maturation and cytolysis. PLoS Pathog. 2013;9:e1003605.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nuesch JP, Rommelaere J. NS1 interaction with CKII alpha: novel protein complex mediating parvovirus-induced cytotoxicity. J Virol. 2006;80:4729–39.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Poole BD, Karetnyi YV, Naides SJ. Parvovirus B19- induced apoptosis of hepatocytes. J Virol. 2004;78(14):7775–83.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gupta SK, Sahoo AP, Gandham RK, Rosh N, Saxena L, Singh A, Harish DR, Tiwari AK. Canine parvovirus NS1 induced apoptosis involves mitochondria, accumulation of reactive oxygen species and activation of caspases. Virus Res. 2016. doi: 10.1016/j.virusres.2015.10.019.Google Scholar
  7. 7.
    Gupta SK, Yadav PK, Gandham RK, Sahoo AP, Singh A, Harish DR, Tiwari AK. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model. Virus Res. 2016. doi: 10.1016/j.virusres.2015.12.017.Google Scholar
  8. 8.
    Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci. 2015;72(6):1073–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Di Piazza M, Mader C, Geletneky K, Herrero Y, Calle M, Weber E, Schlehofer J, Deleu L, Rommelaere J. Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J Virol. 2007;81:4186–98.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Blachère NE, Darnell RB, ML A. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol. 2005;3(6):e185.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20(1):621–67.CrossRefPubMedGoogle Scholar
  12. 12.
    Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. BBA Bioenerg. 2006;1757(9):1371–87.CrossRefGoogle Scholar
  13. 13.
    Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer. 2001;93(4):539–48.CrossRefPubMedGoogle Scholar
  14. 14.
    Santra L, Rajmani RS, Ravi Kumar GVPPS, Saxena S, Dhara SK, Kumar A, Sahoo AP, Singh LV, Desai GS, Chaturvedi U, Kumar S, Tiwari AK. Non-structural protein 1 (NS1) gene of canine parvovirus-2 regresses chemically induced skin tumors in Wistar rats. Res Vet Sci. 2014. doi: 10.1016/j.rvsc.2014.07.024.PubMedGoogle Scholar
  15. 15.
    Llopiz D, Dotor J, Zabaleta A, Lasarte JJ, Prieto J, Borras-Cuesta F, et al. Combined immunization with adjuvant molecules poly(I:C) and anti-CD40 plus a tumor antigen has potent prophylactic and therapeutic antitumor effects. Cancer Immunol Immunother. 2008;57(1):19–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta SK, Deb R, Chellappa MM, Dey S. Toll-like receptors based adjuvants enhancing the immune response to infectious diseases of chicken. Expert Rev Vaccines. 2014;13:909–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Gupta SK, Bajwa P, Deb R, Chellappa MM, Dey S. Flagellin A TLR5 agonist as an adjuvant in chicken vaccines. Clin Vaccine Immunol. 2014;21:261–70.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Sato Y, Goto Y, Narita N, Hoon DS. Cancer cells expressing Toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2009;2(1):205–14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhou M, McFarland-Mancini MM, Funk HM, Husseinzadeh N, Mounajjed T, Drew AF. Toll-like receptor expression in normal ovary and ovarian tumors. Cancer Immunol Immunother. 2009;58(9):1375–85.CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng YS, Xu F. Anticancer function of polyinosinic–polycytidylic acid. Cancer Biol Ther. 2010;10(12):1219–23.CrossRefPubMedGoogle Scholar
  22. 22.
    McBride S, Hoebe K, Georgel P, Janssen E. Cell-associated double-stranded RNA enhances antitumor activity through the production of type I IFN. J Immunol. 2006;177(9):6122–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Banz A, Cremel M, Mouvant A, Guerin N, Horand F, Godfrin Y. Tumor growth control using red blood cells as the antigen delivery system and poly(I:C). J Immunother. 2012;35(5):409–17.CrossRefPubMedGoogle Scholar
  24. 24.
    Wick DA, Martin SD, Nelson BH, Webb JR. Profound CD8+ T cell immunity elicited by sequential daily immunizationwith exogenous antigen plus the TLR3 agonist poly(I:C). Vaccine. 2011;29(5):984–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Salem ML, Kadima AN, Cole DJ, Gillanders WE. Defining the antigenspecific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother. 2005;28(3):220–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Cho HI, Barrios K, Lee YR, Linowski AK, Celis E. BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother. 2013;62(4):787–99.CrossRefPubMedGoogle Scholar
  27. 27.
    Currie AJ, van der Most RG, Broomfield SA, Prosser AC, Tovey MG, Robinson BW. Targeting the effector site with IFN-αβ-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J Immunol. 2008;180(3):1535–44.CrossRefPubMedGoogle Scholar
  28. 28.
    Cui Z, Le UM, Qiu F, Shaker DS. Learning fromviruses: the necrotic bodies of tumor cells with intracellular synthetic dsRNA induced strong anti-tumor immune responses. Pharm Res. 2007;24(9):1645–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, et al. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3–IRF3 signaling and type I interferons in dendritic cells. Vaccine. 2012;30(32):4790–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Babiarova K, Kutinova L, Zurkova K, Krystofova J, Brabcova E, Hainz P, et al. Immunization with WT1-derived peptides by tattooing inhibits the growth of TRAMP-C2 prostate tumor in mice. J Immunother. 2012;35(6):478–87.CrossRefPubMedGoogle Scholar
  31. 31.
    Forghani P, Waller EK. Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat. 2015;153(1):21–30.CrossRefPubMedGoogle Scholar
  32. 32.
    Wu CY, Yang HY, Monie A, Ma B, Tsai HH, Wu TC, Hung CF. Intraperitoneal administration of poly (I: C) with polyethylenimine leads to significant antitumor immunity against murine ovarian tumors. Cancer Immunol Immunother. 2011;60(8):1085–96.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Carlsson G, Gullberg B, Hafström L. Estimation of liver tumor volume using different formulas—an experimental study in rats. J Cancer Res Clin Oncol. 1983;105(1):20–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu CCW, Fletcher CD, Newman PL, Goodlad JR, Burton JC, Levison DA. A comparison of proliferating cell nuclear antigen (PCNA) immunostaining, nucleolar organizer region (AgNOR) staining, and histological grading in gastrointestinal stromal tumours. J Pathol. 1992;166(2):147–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Crocker J, Boldy DA, Egan MJ. How should we count AgNORs? Proposals for a standardized approach. J Pathol. 1989;158(3):185–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Doley J, Singh LV, Kumar GR, Sahoo AP, Saxena L, Chaturvedi U, Saxena S, Kumar R, Singh PK, Rajmani RS, Santra L, Palia SK, Tiwari S, Harish DR, Kumar A, Desai GS, Gupta S, Gupta SK, Tiwari AK. Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways. Appl Biochem Biotechnol. 2014;172(1):497–508.CrossRefPubMedGoogle Scholar
  37. 37.
    Moffatt S, Yaegashi N, Tada K, Tanaka N, Sugamura K. Human parvovirus B19 nonstructural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol. 1998;72(4):3018–28.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhao D, Cai C, Wang Y, Xiao S, Zheng Q. Specific antigastric cancer effects of a recombinant plasmid expressing non-structural protein 1 of parvovirus H1. Saudi Med J. 2014;35(4):336–45.PubMedGoogle Scholar
  39. 39.
    Wang YY, Liu J, Zheng Q, Ran ZH, Salome N, Vogel M, Rommelaere J, Xiao SD, Wang Z. Effect of the parvovirus H-1 non-structural protein NS1 on the tumorigenicity of human gastric cancer cells. J Dig Dis. 2012b;13(7):366–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Lv D, Zhang Y, Kim HJ, Zhang L, Ma X. CCL5 as a potential immunotherapeutic target in triple-negative breast cancer. Cell Mol Immunol. 2013;10(4):303–10.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, Carson III WE. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat. 2013;140(1):13–21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Martin F, Apetoh L, Ghiringhelli F. Role of myeloid-derived suppressor cells in tumor immunotherapy. Immunotherapy. 2012;4(1):43–57.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang C, Lei GS, Shao S, Jung HW, Durant PJ, Lee CH. Accumulation of myeloid-derived suppressor cells in the lungs during pneumocystis pneumonia. Infect Immun. 2012;80(10):3634–41.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Younos IH, Dafferner AJ, Gulen D, Britton HC, Talmadge JE. Tumor regulation of myeloid-derived suppressor cell proliferation and trafficking. Int Immunopharmacol. 2012;13(3):245–56.CrossRefPubMedGoogle Scholar
  45. 45.
    Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 2003;198:1741–52.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Salvadori S, Martinelli G, Zier K. Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol. 2000;164:2214–20.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuhn S, Hyde EJ, Yang J, Rich FJ, Harper JL, Kirman JR, Ronchese F. Increased numbers of monocyte-derived dendritic cells during successful tumor immunotherapy with immune-activating agents. J Immunol. 2013;191(4):1984–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Salem ML, Diaz-Montero CM, El-Naggar SA, Chen Y, Moussa O, Cole DJ. The TLR3 agonist poly(I:C) targets CD8+ T cells and augments their antigen-specific responses upon their adoptive transfer into naive recipient mice. Vaccine. 2009;27(4):549–57.CrossRefPubMedGoogle Scholar
  49. 49.
    Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA, et al. APC-independent activation of NK cells by the Toll-like receptor 3 agonist doublestranded RNA. J Immunol. 2004;172(1):138–43.CrossRefPubMedGoogle Scholar
  50. 50.
    Lauzon NM, Mian F, MacKenzie R, Ashkar AA. The direct effects of Toll-like receptor ligands on human NK cell cytokine production and cytotoxicity. Cell Immunol. 2006;241(2):102–12.CrossRefPubMedGoogle Scholar
  51. 51.
    Lion E, Anguille S, Berneman ZN, Smits EL, Van Tendeloo VF. Poly(I:C) enhances the susceptibility of leukemic cells to NK cell cytotoxicity and phagocytosis by DC. PLoS One. 2011;6(6):e20952.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Huang YK, Zheng Z, Qiu F. Polyinosinic–cytidylic acid as an adjuvant on natural killer- and dendritic cell-mediated antitumor activities. Tumour Biol. 2013;34(3):1615–23.CrossRefPubMedGoogle Scholar
  53. 53.
    Muthuswamy R, Wang L, Pitteroff J, Gingrich JR, Kalinski P. Combination of IFNα and poly-I: C reprograms bladder cancer microenvironment for enhanced CTL attraction. J Immunother Cancer. 2015;3(1):1–10.CrossRefGoogle Scholar
  54. 54.
    Zoglmeier C, Bauer H, Nörenberg D, Wedekind G, Bittner P, Sandholzer N, et al. CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 2011;17(7):1765–75.CrossRefPubMedGoogle Scholar
  55. 55.
    Bhoopathi P, Quinn BA, Gui Q, Shen XN, Grossman SR, Das SK, et al. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine–polycytidylic acid. Cancer Res. 2014.Google Scholar
  56. 56.
    Forte G, Rega A, Morello S, Luciano A, Arra C, Pinto A, Sorrentino R. Polyinosinic–polycytidylic acid limits tumor outgrowth in a mouse model of metastatic lung cancer. J Immunol. 2012;188(11):5357–64.CrossRefPubMedGoogle Scholar
  57. 57.
    Inao T, Harashima N, Monma H, Okano S, Itakura M, Tanaka T, et al. Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly (I: C), on human breast cancer. Breast Cancer Res Treat. 2012;134(1):89–100.CrossRefPubMedGoogle Scholar
  58. 58.
    Jiang Q, Wei H, Tian Z. Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer. 2008;8(1):12.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, Cruse JM. Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol. 2014;97(1):44–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Folkman J (2003) Angiogenesis and apoptosis. In: Seminars in cancer biology. 13(2):159–67. Academic Press.Google Scholar
  61. 61.
    Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, et al. Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6(4):409–21.CrossRefPubMedGoogle Scholar
  62. 62.
    Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8(8):618–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Monu NR, Frey AB. Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship. Immunol Investig. 2012;41(6–7):595–613.CrossRefGoogle Scholar
  64. 64.
    Bocchia M, Bronte V, Colombo MP, De Vincentiis A, Di Nicola M, Forni G, Lanata L, Lemoli RM, Massaia M, Rondelli D, Zanon P, Tura S. Antitumor vaccination: where we stand. Haematologica. 2000;85(11):1172–206.PubMedGoogle Scholar
  65. 65.
    Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol. 2001;19(1):47–64.CrossRefPubMedGoogle Scholar
  67. 67.
    Moehler MH, Zeidler M, Wilsberg V, Cornelis JJ, Woelfel T, Rommelaere J, Galle PR, Heike M. Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther. 2005;16(8):996–1005.CrossRefPubMedGoogle Scholar
  68. 68.
    Albert ML, Pearce SFA, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N. Immature dendritic cells phagocytose apoptotic cells via avb5 and CD36, and crosspresent antigens to cytotoxic T lymphocytes. J Exp Med. 1998;188(7):1359–68.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Nüesch JP, Rommelaere J. Tumor suppressing properties of rodent parvovirus NS1 proteins and their derivatives. Anticancer genes. London: Springer; 2014. p. 99–124.Google Scholar
  70. 70.
    Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost. 2011;9(s1):306–15.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Han X, Guo B, Li Y, Zhu B. Tissue factor in tumor microenvironment: a systematic review. J Hematol Oncol. 2014;1(7):54.CrossRefGoogle Scholar
  72. 72.
    Guo Z, Chen L, Zhu Y, Zhang Y, He S, Qin J, Tang X, Zhou J, Wei Y. Double-stranded RNA-induced TLR3 activation inhibits angiogenesis and triggers apoptosis of human hepatocellular carcinoma cells. Oncol Rep. 2012;27(2):396–402.PubMedGoogle Scholar
  73. 73.
    Wu J, Cui H, Dick AD, Liu L. TLR9 agonist regulates angiogenesis and inhibits corneal neovascularization. Am J Pathol. 2014;184(6):1900–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Kleinman ME, Yamada K, Takeda A, et al. Sequence- and target independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452:591–7.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cho WG, Albuquerque RJ, Kleinman ME, et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci U S A. 2009;106:7137–42.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Paone A, Galli R, Gabellini C, Lukashev D, Starace D, Gorlach A, De Cesaris P, Ziparo E, Del Bufalo D, Sitkovsky MV, Filippini A. Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1α. Neoplasia. 2010;12(7):539–49.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Molecular Biology Laboratory, Division of Veterinary BiotechnologyIndian Veterinary Research InstituteBareillyIndia
  2. 2.Division of Animal BiochemistryIndian Veterinary Research InstituteBareillyIndia

Personalised recommendations