Skip to main content

Advertisement

Log in

Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers

  • Review
  • Published:
Tumor Biology

Abstract

Progress in cancer biology has led to an increasing discovery of oncogenic alterations of the platelet-derived growth factor receptors (PDGFRs) in cancers. In addition, their overexpression in numerous cancers invariably makes PDGFRs and platelet-derived growth factors (PDGFs) prognostic and treatment markers in some cancers. The oncologic alterations of the PDGFR/PDGF system affect the extracellular, transmembrane and tyrosine kinase domains as well as the juxtamembrane segment of the receptor. The receptor is also involved in fusions with intracellular proteins and receptor tyrosine kinase. These discoveries undoubtedly make the system an attractive oncologic therapeutic target. This review covers elementary biology of PDGFR/PDGF system and its role as a prognostic and treatment marker in cancers. In addition, the multifarious therapeutic targets of PDGFR/PDGF system are discussed. Great potential exists in the role of PDGFR/PDGF system as a prognostic and treatment marker and for further exploration of its multifarious therapeutic targets in safe and efficacious management of cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Y. Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med. 2013;19(8):460–73.

    Article  CAS  PubMed  Google Scholar 

  2. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology. 2008;47 suppl 5:v2–4.

    Article  CAS  PubMed  Google Scholar 

  4. Miyata T, Toho T, Nonoguchi N, Furuse M, Kuwabara H, Yoritsune E, et al. The roles of platelet-derived growth factors and their receptors in brain radiation necrosis. Radiat Oncol. 2014;9:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kumabe T, Sohma Y, Kayama T, Yoshimoto T, Yamamoto T. Overexpression and amplification of alpha-PDGF receptor gene lacking exons coding for a portion of the extracellular region in a malignant glioma. Tohoku J Exp Med. 1992;168(2):265–9.

    Article  CAS  PubMed  Google Scholar 

  6. Clarke I, Dirks P. A human brain tumor-derived PDGFR-α deletion mutant is transforming. Oncogene. 2003;22(5):722–33.

    Article  CAS  PubMed  Google Scholar 

  7. Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen V-H, et al. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am J Hum Genet. 2013;92(6):996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gilbertson RJ, Langdon JA, Hollander A, Hernan R, Hogg TL, Gajjar A, et al. Mutational analysis of PDGFR–RAS/MAPK pathway activation in childhood medulloblastoma. Eur J Cancer. 2006;42(5):646–9.

    Article  CAS  PubMed  Google Scholar 

  9. Toffalini F, Demoulin J-B. New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood. 2010;116(14):2429–37.

    Article  CAS  PubMed  Google Scholar 

  10. Reilly JT. Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev. 2003;17(4):241–8.

    Article  PubMed  Google Scholar 

  11. Tarn C, Godwin AK. The molecular pathogenesis of gastrointestinal stromal tumors. Clin Colorectal Cancer. 2006;6:S7–17.

    Article  CAS  PubMed  Google Scholar 

  12. Demoulin J-B, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev. 2014.

  13. Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, et al. PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev. 2010;24(19):2205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cimpean AM, Ceauşu R, Encică S, Gaje PN, Ribatti D, Raica M. Platelet-derived growth factor and platelet‐derived growth factor receptor‐α expression in the normal human thymus and thymoma. Int J Exp Pathol. 2011;92(5):340–4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Matei D, Kelich S, Cao L, Menning N, Emerson RE, Rao J, et al. PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biol Ther. 2007;6(12):1951–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kubo T, Piperdi S, Rosenblum J, Antonescu CR, Chen W, Kim HS, et al. Platelet‐derived growth factor receptor as a prognostic marker and a therapeutic target for imatinib mesylate therapy in osteosarcoma. Cancer. 2008;112(10):2119–29.

    Article  CAS  PubMed  Google Scholar 

  17. Chu JS, Ge FJ, Zhang B, Wang Y, Silvestris N, Liu LJ, et al. Expression and prognostic value of VEGFR-2, PDGFR-β, and c-Met in advanced hepatocellular carcinoma. J Exp Clin Cancer Res. 2013;32(1):1–8. doi:10.1186/1756-9966-32-16.

    Article  CAS  Google Scholar 

  18. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006;116(6):1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer. 2013;12(1):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carnero A, Moneo Ocaña V. PDGFR-α as response marker for PM00104 treatment. 2009.

  21. Kurokawa Y, Matsuura N, Kawabata R, Nishikawa K, Ebisui C, Yokoyama Y, et al. Prognostic impact of major receptor tyrosine kinase expression in gastric cancer. Ann Surg Oncol. 2014;21(4):584–90.

    Article  Google Scholar 

  22. Cerchia L, Condorelli G, De Franciscis V. Neutralizing RNA aptamers against PDGFbeta and uses thereof in the therapy and diagnosis of hyperproliferative diseases. Google Patents; 2013.

  23. Gérard C, Debruyne C. Immunotherapy in the landscape of new targeted treatments for non-small cell lung cancer. Mol Oncol. 2009;3(5):409–24.

    Article  PubMed  CAS  Google Scholar 

  24. Becerra CR, Conkling P, Vogelzang N, Wu H, Hong S, Narwal R, et al. A phase I dose-escalation study of MEDI-575, a PDGFRα monoclonal antibody, in adults with advanced solid tumors. Cancer Chemother Pharmacol. 2014;74:917–25. doi:10.1007/s00280-014-2567-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pietras K, Rubin K, Sjöblom T, Buchdunger E, Sjöquist M, Heldin C-H, et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 2002;62(19):5476–84.

    CAS  PubMed  Google Scholar 

  26. Lu C, Shahzad MM, Moreno-Smith M, Lin Y, Jennings NB, Allen JK, et al. Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol Ther. 2010;9(3):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roy K, Kanwar R, Kanwar J. Targeted inhibition of tumour vascularisation using anti-PDGF/VEGF aptamers. Austin J Nanomed Nanotechnol. 2014;2(5):7.

    Google Scholar 

  28. Rosenzweig SA. Acquired resistance to drugs targeting receptor tyrosine kinases. Biochem Pharmacol. 2012;83(8):1041–8.

    Article  CAS  PubMed  Google Scholar 

  29. Liu J, Liao S, Huang Y, Samuel R, Shi T, Naxerova K, et al. PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(11):3638–48. doi:10.1158/1078-0432.CCR-10-2456.

    Article  CAS  Google Scholar 

  30. Wang B, Rosano JM, Cheheltani RE, Achary MP, Kiani MF. Towards a targeted multi-drug delivery approach to improve therapeutic efficacy in breast cancer. Expert Opin Drug Deliv. 2010;7(10):1159–73.

    Article  CAS  PubMed  Google Scholar 

  31. Rajkumar VS, Boxer G, Robson M, Muddle J, Papastavrou Y, Pedley RB. A comparative study of PDGFR inhibition with imatinib on radiolabeled antibody targeting and clearance in two pathologically distinct models of colon adenocarcinoma. Tumor Biol. 2012;33(6):2019–29.

    Article  CAS  Google Scholar 

  32. Chen P-H, Chen X, He X. Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochim Biophys Acta (BBA)-Proteins Proteomics. 2013;1834(10):2176–86.

    Article  CAS  Google Scholar 

  33. Omura T, Heldin C-H, Östman A. Immunoglobulin-like domain 4-mediated receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem. 1997;272(19):12676–82.

    Article  CAS  PubMed  Google Scholar 

  34. Heldin C-H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283–316.

    CAS  PubMed  Google Scholar 

  35. Gueller S, Hehn S, Nowak V, Gery S, Serve H, Brandts CH, et al. Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling. Exp Hematol. 2011;39(5):591–600.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang L, Chen Y, Sang J, Li Y, Lan T, Wang Y, et al. Type II cGMP-dependent protein kinase inhibits activation of key members of the RTK family in gastric cancer cells. Biomed Rep. 2013;1(3):399–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt Y, Simunovic F, Strassburg S, Pfeifer D, Stark GB, Finkenzeller G. miR-126 regulates platelet-derived growth factor receptor-α expression and migration of primary human osteoblasts. Biol Chem. 2015;396(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  38. Boström H, Gritli-Linde A, Betsholtz C. PDGF-a/PDGF alpha-receptor signaling is required for lung growth and the formation of alveoli but not for early lung branching morphogenesis. Dev Dyn. 2002;223(1):155–62. doi:10.1002/dvdy.1225.

    Article  PubMed  CAS  Google Scholar 

  39. Karlsson L, Bondjers C, Betsholtz C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development. 1999;126(12):2611–21.

    CAS  PubMed  Google Scholar 

  40. Karlsson L, Lindahl P, Heath JK, Betsholtz C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development. 2000;127(16):3457–66.

    CAS  PubMed  Google Scholar 

  41. Fruttiger M, Karlsson L, Hall AC, Abramsson A, Calver AR, Bostrom H, et al. Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development. 1999;126(3):457–67.

    CAS  PubMed  Google Scholar 

  42. Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, et al. Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A–deficient Mice. J Cell Biol. 2000;149(5):1019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu X, Bringas P, Soriano P, Chai Y. PDGFR‐α signaling is critical for tooth cusp and palate morphogenesis. Dev Dyn. 2005;232(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  44. Lindahl P, Hellstrom M, Kalén M, Karlsson L, Pekny M, Pekna M, et al. Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development. 1998;125(17):3313–22.

    CAS  PubMed  Google Scholar 

  45. Hellstrom M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126(14):3047–55.

    CAS  PubMed  Google Scholar 

  46. Bjarnegård M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development. 2004;131(8):1847–57.

    Article  PubMed  CAS  Google Scholar 

  47. He L, Hristova K. Physical–chemical principles underlying RTK activation, and their implications for human disease. Biochim Biophys Acta (BBA)-Biomembranes. 2012;1818(4):995–1005.

    Article  CAS  Google Scholar 

  48. Pilz IH, Di Pasquale G, Rzadzinska A, Leppla SH, Chiorini JA. Mutation in the platelet-derived growth factor receptor alpha inhibits adeno-associated virus type 5 transduction. Virology. 2012;428(1):58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pauwels D, Klaassen H, Lahortiga I, Kilonda A, Jacobs K, Sweron B, et al. Identification of novel FLT3 kinase inhibitors. Eur J Med Chem. 2013;63:713–21.

    Article  CAS  PubMed  Google Scholar 

  50. Guo J, Cahill MR, McKenna SL, O’Driscoll CM. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol Adv. 2014;32(8):1396–409.

    Article  CAS  PubMed  Google Scholar 

  51. Tsao AS, Wei W, Kuhn E, Spencer L, Solis LM, Suraokar M, et al. Immunohistochemical overexpression of platelet-derived growth factor receptor–beta (PDGFR-β) is associated with PDGFRB gene copy number gain in Sarcomatoid non–small-cell lung cancer. Clin Lung Cancer. 2011;12(6):369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hofer MD, Fecko A, Shen R, Setlur SR, Pienta KG, Tomlins SA, et al. Expression of the platelet-derived growth factor receptor in prostate cancer and treatment implications with tyrosine kinase inhibitors. Neoplasia. 2004;6(5):503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsao AS, Harun N, Fujimoto J, Devito V, Lee JJ, Kuhn E, et al. Elevated PDGFRB gene copy number gain is prognostic for improved survival outcomes in resected malignant pleural mesothelioma. Ann Diagn Pathol. 2014;18(3):140–5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shimizu A, O’Brien KP, Sjöblom T, Pietras K, Buchdunger E, Collins VP, et al. The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res. 1999;59(15):3719–23.

    CAS  PubMed  Google Scholar 

  55. Paulsson J, Sjöblom T, Micke P, Pontén F, Landberg G, Heldin C-H, et al. Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am J Pathol. 2009;175(1):334–41.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Seymour L, Bezwoda W. Positive immunostaining for platelet derived growth factor (PDGF) is an adverse prognostic factor in patients with advanced breast cancer. Breast Cancer Res Treat. 1994;32(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  57. Ariad S, Seymour L, Bezwoda W. Platelet-derived growth factor (PDGF) in plasma of breast cancer patients: correlation with stage and rate of progression. Breast Cancer Res Treat. 1991;20(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  58. Seymour L, Dajee D, Bezwoda W. Tissue platelet derived-growth factor (PDGF) predicts for shortened survival and treatment failure in advanced breast cancer. Breast Cancer Res Treat. 1993;26(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  59. Henriksen R, Funa K, Wilander E, Bäckström T, Ridderheim M, Öberg K. Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res. 1993;53(19):4550–4.

    CAS  PubMed  Google Scholar 

  60. Madsen CV, Steffensen KD, Olsen DA, Waldstrom M, Smerdel M, Adimi P, et al. Serial measurements of serum PDGF-AA, PDGF-BB, FGF2, and VEGF in multiresistant ovarian cancer patients treated with bevacizumab. J Ovarian Res. 2012;5(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kilvaer TK, Smeland E, Valkov A, Sorbye SW, Bremnes RM, Busund L-T, et al. The VEGF-and PDGF-family of angiogenic markers have prognostic impact in soft tissue sarcomas arising in the extremities and trunk. BMC Clin Pathol. 2014;14(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Katano M, Nakamura M, Fujimoto K, Miyazaki K, Morisaki T. Prognostic value of platelet-derived growth factor-A (PDGF-A) in gastric carcinoma. Ann Surg. 1998;227(3):365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ogawa N, Inokuchi M, Takagi Y, Sugita H, Kato K, Kojima K, et al. Clinical significance of platelet derived growth factor-C and-D in gastric cancer. Oncol Lett. 2015;10(6):3495–501.

    PubMed  PubMed Central  Google Scholar 

  64. Yang SX, Steinberg SM, Nguyen D, Wu TD, Modrusan Z, Swain SM. Gene expression profile and angiogenic markers correlate with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res. 2008;14(18):5893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cancer Genetics Web. http://www.cancerindex.org/geneweb/FIP1L1.htm. 28 February, 2015.

  66. Shen J, Vil MD, Zhang H, Tonra JR, Rong LL, Damoci C, et al. An antibody directed against PDGF receptor β enhances the antitumor and the anti-angiogenic activities of an anti-VEGF receptor 2 antibody. Biochem Biophys Res Commun. 2007;357(4):1142–7.

    Article  CAS  PubMed  Google Scholar 

  67. Pendergrast PS, Marsh HN, Grate D, Healy JM, Stanton M. Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech: JBT. 2005;16(3):224.

    PubMed  PubMed Central  Google Scholar 

  68. Galluzzi L, Vacchelli E, Fridman W, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Esposito CL, Camorani S, Iaboni M, Condorelli G, de Franciscis V, Cerchia L. RNA aptamers as highly specific inhibitors of three human RTKs including Axl. EGFR PDGFR Cancer Res. 2012;72(8 Supplement):1100.

    Article  Google Scholar 

  70. Qin Y. Targeting the promoter regions of PDGF ligand and receptor. ProQuest; 2008.

  71. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    Article  PubMed  CAS  Google Scholar 

  72. Schwickart M, Mehrzai F, Pearson J, Shaghasi N, Chavez C, Schneider A, et al. Identification and elimination of target-related matrix interference in a neutralizing anti-drug antibody assay. J Immunol Methods. 2014;403(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  73. Shen J, Vil MD, Prewett M, Damoci C, Zhang H, Li H, et al. Development of a fully human anti-PDGFRβ antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia. 2009;11(6):594–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chang YM, Donovan MJ, Tan W. Using aptamers for cancer biomarker discovery. J Nucleic Acids. 2013;2013.

  75. Bouchard P, Hutabarat R, Thompson K. Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol. 2010;50:237–57.

    Article  CAS  PubMed  Google Scholar 

  76. Cerchia L, Esposito CL, Camorani S, Rienzo A, Stasio L, Insabato L, et al. Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther. 2012;20(12):2291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tombelli S, Minunni M, Mascini M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng. 2007;24(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  78. Tyner JW, Deininger MW, Loriaux MM, Chang BH, Gotlib JR, Willis SG, et al. RNAi screen for rapid therapeutic target identification in leukemia patients. Proc Natl Acad Sci. 2009;106(21):8695–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ambesajir A, Kaushik A, Kaushik JJ, Petros ST. RNA interference: a futuristic tool and its therapeutic applications. Saudi J Biol Sci. 2012;19(4):395–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Young SWS, Stenzel M, Jia-Lin Y. Nanoparticle-siRNA: a potential cancer therapy? Critical Reviews in Oncology/Hematology. 2015.

  81. Karnati HK, Yalagala RS, Undi R, Pasupuleti SR, Gutti RK. Therapeutic potential of siRNA and DNAzymes in cancer. Tumor Biol. 2014;35(10):9505–21.

    Article  CAS  Google Scholar 

  82. Kaulfuβ S, Seemann H, Kampe R, Meyer J, Dressel R, König B, et al. Blockade of the PDGFR family together with SRC leads to diminished proliferation of colorectal cancer cells. Oncotarget. 2013;4(7):1037.

    Article  PubMed Central  Google Scholar 

  83. Park YH, Seo SY, Ha M, Ku JH, Kim HH, Kwak C. Inhibition of prostate cancer using RNA interference-directed knockdown of platelet-derived growth factor receptor. Urology. 2011;77(6):1509. e9-e15.

    Article  PubMed  Google Scholar 

  84. Liu T, Zhang J, Zhang J, Mu X, Su H, Hu X, et al. RNA interference against platelet-derived growth factor receptor α mRNA inhibits fibroblast transdifferentiation in skin lesions of patients with systemic sclerosis. PLoS One. 2013;8(4), e60414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen J, Wall NR, Kocher K, Duclos N, Fabbro D, Neuberg D, et al. Stable expression of small interfering RNA sensitizes TEL-PDGFβR to inhibition with imatinib or rapamycin. J Clin Investig. 2004;113(12):1784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen SW, Zhang XR, Wang CZ, Chen WZ, Xie WF, Chen YX. RNA interference targeting the platelet‐derived growth factor receptor β subunit ameliorates experimental hepatic fibrosis in rats. Liver Int. 2008;28(10):1446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Khvorova A, Reynolds A, Leake D, Marshall W, Read S, Scaringe S. siRNA targeting platelet-derived growth factor receptor beta polypeptide (PDGFR). Google Patents; 2007.

  88. Wu S, Yan G, Zhu W. Evolvement of microRNAs as therapeutic targets for malignant gliomas. INTECH Open Access Publisher; 2013.

  89. Rehman SK, Baldassarre G, Calin GA, Nicoloso MS. MicroRNAs: the jack of all trades. Clin Leuk. 2009;3(1):20–32.

    Article  CAS  Google Scholar 

  90. Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E. Differential roles of PDGFR-α and PDGFR-β in angiogenesis and vessel stability. FASEB J. 2009;23(1):153–63.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, Chintalgattu V, Shih T, Ai D, Xia Y, Khakoo AY. MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol. 2011;51(3):337–46.

    Article  CAS  PubMed  Google Scholar 

  92. Eberhart JK, He X, Swartz ME, Yan Y-L, Song H, Boling TC, et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet. 2008;40(3):290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peng Y, Guo J-J, Liu Y-M, Wu X-L. MicroRNA-34A inhibits the growth, invasion and metastasis of gastric cancer by targeting PDGFR and MET expression. Biosci Rep. 2014;34(3):247–56.

    Article  CAS  Google Scholar 

  94. Chen D, Li Y, Mei Y, Geng W, Yang J, Hong Q, et al. miR-34a regulates mesangial cell proliferation via the PDGFR-β/Ras-MAPK signaling pathway. Cell Mol Life Sci. 2014;71(20):4027–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A, et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med. 2003;9(10):1306–12.

    Article  PubMed  CAS  Google Scholar 

  96. Anderson AC, Pollastri MP, Schiffer CA, Peet NP. The challenge of developing robust drugs to overcome resistance. Drug Discov Today. 2011;16(17):755–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Broxterman HJ, Georgopapadakou NH. Anticancer therapeutics: “addictive” targets, multi-targeted drugs, new drug combinations. Drug Resist Updat. 2005;8(4):183–97.

    Article  CAS  PubMed  Google Scholar 

  98. Fausel C. Targeted chronic myeloid leukemia therapy: seeking a cure. Am J Health Syst Pharm. 2007;64(24 Supplement 15):S9–15.

    Article  CAS  PubMed  Google Scholar 

  99. Bond M, Bernstein ML, Pappo A, Schultz KR, Krailo M, Blaney SM, et al. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a children’s oncology group study. Pediatr Blood Cancer. 2008;50(2):254–8.

    Article  PubMed  Google Scholar 

  100. Modi S, Seidman AD, Dickler M, Moasser M, D’Andrea G, Moynahan ME, et al. A phase II trial of imatinib mesylate monotherapy in patients with metastatic breast cancer. Breast Cancer Res Treat. 2005;90(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  101. Dresemann G, Weller M, Rosenthal MA, Wedding U, Wagner W, Engel E, et al. Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide. J Neuro-Oncol. 2010;96(3):393–402.

    Article  CAS  Google Scholar 

  102. Kang Y-K, Ryu M-H, Yoo C, Ryoo B-Y, Kim HJ, Lee JJ, et al. Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2013;14(12):1175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baranowska-Kortylewicz J, Abe M, Pietras K, Kortylewicz ZP, Kurizaki T, Nearman J, et al. Effect of platelet-derived growth factor receptor-β inhibition with STI571 on radioimmunotherapy. Cancer Res. 2005;65(17):7824–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol. 2011;12(9):841–51.

    Article  CAS  PubMed  Google Scholar 

  105. Reardon DA, Egorin MJ, Quinn JA, Rich JN, Gururangan I, Vredenburgh JJ, et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol. 2005;23(36):9359–68.

    Article  CAS  PubMed  Google Scholar 

  106. Wei G, Rafiyath S, Liu D. First-line treatment for chronic myeloid leukemia: dasatinib, nilotinib, or imatinib. J Hematol Oncol. 2010;3(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sadovnik I, Lierman E, Peter B, Herrmann H, Suppan V, Stefanzl G, et al. Identification of ponatinib as a potent inhibitor of growth, migration, and activation of neoplastic eosinophils carrying FIP1L1-PDGFRA. Exp Hematol. 2014;42(4):282–93. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6(9):714–27.

    Article  CAS  PubMed  Google Scholar 

  109. Glabbeke MV, Verweij J, Casali PG, Simes J, Cesne AL, Reichardt P, et al. Predicting toxicities for patients with advanced gastrointestinal stromal tumours treated with imatinib: a study of the European organisation for research and treatment of cancer, the Italian Sarcoma Group, and the Australasian Gastro-Intestinal Trials Group (EORTC–ISG–AGITG). Eur J Cancer. 2006;42(14):2277–85.

    Article  PubMed  CAS  Google Scholar 

  110. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  111. Gupta-Abramson V, Troxel AB, Nellore A, Puttaswamy K, Redlinger M, Ransone K, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26(29):4714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Procopio G, Verzoni E, Testa I, Nicolai N, Salvioni R, DeBraud F. Experience with sorafenib in the treatment of advanced renal cell carcinoma. Ther Adv Urol. 2012;4(6):303–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Escudier B. Sorafenib for the management of advanced renal cell carcinoma. Expert Rev Anticancer Ther. 2011;11:825–36.

    Article  CAS  PubMed  Google Scholar 

  114. Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(16):2505–12.

    Article  CAS  PubMed  Google Scholar 

  115. Weigel MT, Meinhold-Heerlein I, Bauerschlag DO, Schem C, Bauer M, Jonat W, et al. Combination of imatinib and vinorelbine enhances cell growth inhibition in breast cancer cells via PDGFR β signalling. Cancer Lett. 2009;273(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  116. Jäger D, Zemanova M, Leonhartsberger N, editors. PREDICT (Patient Characteristics in Renal Cell Carcinoma and Daily Practice Treatment with Sorafenib) global non-interventional study: final report. 34th ESMO and 15th ECCO Meeting; 2012.

  117. Norton K-A, Han Z, Popel AS, Pandey NB. Antiangiogenic cancer drug sunitinib exhibits unexpected proangiogenic effects on endothelial cells. Oncol Targets Ther. 2014;7:1571–82.

    Article  CAS  Google Scholar 

  118. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Asp Med. 2011;32(2):88–111.

    Article  CAS  Google Scholar 

  119. van der Graaf WT, Blay J-Y, Chawla SP, Kim D-W, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.

    Article  PubMed  CAS  Google Scholar 

  120. Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 2010;11(10):962–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Taylor SK, Chia S, Dent S, Clemons M, Agulnik M, Grenci P, et al. A phase II study of pazopanib in patients with recurrent or metastatic invasive breast carcinoma: a trial of the princess Margaret hospital phase II consortium. Oncologist. 2010;15(8):810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Socinski MA. Multitargeted receptor tyrosine kinase inhibition: an antiangiogenic strategy in non-small cell lung cancer. Cancer Treat Rev. 2011;37(8):611–7.

    Article  CAS  PubMed  Google Scholar 

  123. Friedlander M, Hancock KC, Rischin D, Messing MJ, Stringer CA, Matthys GM, et al. A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecol Oncol. 2010;119(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  124. Matrana M, Duran C, Shetty A, Xiao L, Atkinson B, Corn P, et al. Outcomes of patients with metastatic clear-cell renal cell carcinoma treated with pazopanib after disease progression with other targeted therapies. Eur J Cancer. 2013;49(15):3169–75.

    Article  CAS  PubMed  Google Scholar 

  125. Hainsworth JD, Rubin MS, Arrowsmith ER, Khatcheressian J, Crane EJ, Franco LA. Pazopanib as second-line treatment after sunitinib or bevacizumab in patients with advanced renal cell carcinoma: a Sarah Cannon Oncology Research Consortium Phase II Trial. Clin Genitourin Cancer. 2013;11(3):270–5.

    Article  PubMed  Google Scholar 

  126. Escudier B, Porta C, Bono P, Powles T, Eisen T, Sternberg CN, et al. Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES study. J Clin Oncol. 2014;32:1412–8.

    Article  CAS  PubMed  Google Scholar 

  127. Schutz FA, Choueiri TK, Sternberg CN. Pazopanib: clinical development of a potent anti-angiogenic drug. Crit Rev Oncol/Hematol. 2011;77(3):163–71.

    Article  Google Scholar 

  128. H-y C, Guo H, X-w S, Q-y Y, W-y L. Additive effect by combination of Akt inhibitor, MK-2206, and PDGFR inhibitor, tyrphostin AG 1296, in suppressing anaplastic thyroid carcinoma cell viability and motility. Oncol Targets Ther. 2014;7:425–32.

    Google Scholar 

  129. Plé PA, Jung F, Ashton S, Hennequin L, Laine R, Morgentin R, et al. Discovery of AZD2932, a new Quinazoline Ether Inhibitor with high affinity for VEGFR-2 and PDGFR tyrosine kinases. Bioorg Med Chem Lett. 2012;22(1):262–6.

    Article  PubMed  CAS  Google Scholar 

  130. Lamba G, Ambrale S, Lee B, Gupta R, Rafiyath SM, Liu D. Recent advances and novel agents for gastrointestinal stromal tumor (GIST). J Hematol Oncol. 2012;5(1):21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Galanis A, Ma H, Rajkhowa T, Ramachandran A, Small D, Cortes J, et al. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood. 2014;123(1):94–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Selleck Chemicals. http://www.selleckchem.com/pdgfr.html.

  133. Smith CC, Lasater EA, Lin KC, Wang Q, McCreery MQ, Stewart WK, et al. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc Natl Acad Sci. 2014;111(14):5319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Phase II study of crenolanib in subjects with relapsed/refractory AML with FLT3 activating mutations. http://clinicaltrials.gov/show/NCT01522469. November 20, 2014.

  135. Dai J, Kong Y, Si L, Chi Z, Cui C, Sheng X, et al. Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin Cancer Res. 2013;19(24):6935–42.

    Article  CAS  PubMed  Google Scholar 

  136. Wang P, Song L, Ge H, Jin P, Jiang Y, Hu W, et al. Crenolanib, a PDGFR inhibitor, suppresses lung cancer cell proliferation and inhibits tumor growth in vivo. Oncol Targets Ther. 2014;7:1761–8.

    Article  CAS  Google Scholar 

  137. Phase II study of crenolanib (CP868,596), for the treatment of patients with advanced gastrointestinal stromal tumors with the D842 related mutations and deletions in the PDGFRA Gene. http://clinicaltrials.gov/show/NCT01243346. November 20, 2014.

  138. NCI Drug Dictionary - National Cancer Institute. http://www.cancer.gov/drugdictionary.

  139. Doi T, Ma Y, Dontabhaktuni A, Nippgen C, Nippgen J, Ohtsu A. Phase I study of olaratumab in Japanese patients with advanced solid tumors. Cancer Sci. 2014;105(7):862–9. doi:10.1111/cas.12444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Russell MR, Liu Q, Fatatis A. Targeting the α receptor for platelet-derived growth factor as a primary or combination therapy in a preclinical model of prostate cancer skeletal metastasis. Clin Cancer Res. 2010;16(20):5002–10.

    Article  CAS  PubMed  Google Scholar 

  141. A phase 2 study of a human anti-PDGFRα monoclonal antibody (IMC-3G3) in Previously treated patients with unresectable and/or metastatic gastrointestinal stromal tumors (GIST). http://clinicaltrials.gov/ct2/show/NCT01316263? Accessed October 10, 2014.

  142. Lechleider R, Becerra C, Liang M, Narwal R, Shi L, Conkling P, et al. 404 phase I study of MEDI-575, a fully human monoclonal antibody targeting PDGFR-alpha in subjects with advanced solid tumors. Eur J Cancer Suppl. 2010;8(7):128.

    Article  Google Scholar 

  143. A phase 2 study of MEDI-575 in adult subjects with recurrent glioblastoma multiforme. http://www.cedars-sinai.edu/Patients/Programs-and-Services/Brain-Tumor-Center/Clinical-Trials/Trials-in-Process/Initial-Recurrence-of-Glioblastoma-Multiforme.aspx.

  144. A study of carboplatin and paclitaxel with or without MEDI-575 in adults with previously untreated, advanced non-small cell lung cancer. http://clinicaltrials.gov/show/NCT01268059. Accessed October 23, 2014.

  145. Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013;48(1):259–71.

    Article  CAS  PubMed  Google Scholar 

  146. A phase 2, randomized, double-masked, controlled trial to establish the safety and efficacy of intravitreous injections of E10030 (Anti-PDGF Pegylated Aptamer) given in combination with Lucentis in subjects with neovascular age-related macular degeneration. http://clinicaltrials.gov/show/NCT01089517 November 24, 2014.

  147. A phase 3 safety and efficacy study of Fovista® (E10030) intravitreous administration in combination with Lucentis® compared to Lucentis® Monotherapy. http://clinicaltrials.gov/show/NCT01940900. November 24, 2014.

  148. Camorani S, Esposito CL, Rienzo A, Catuogno S, Iaboni M, Condorelli G, et al. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFR[beta] aptamer. Mol Ther. 2014;22(4):828–41. doi:10.1038/mt.2013.300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Davids M, Charlton A, Ng S-S, Chong M-L, Laubscher K, Dar M, et al. Response to a novel multitargeted tyrosine kinase inhibitor pazopanib in metastatic Merkel cell carcinoma. J Clin Oncol. 2009;27(26):e97–100.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwaku Appiah-Kubi or Yongchang Chen.

Ethics declarations

Funding

This study was supported by grants from the National Natural Science Foundation of China (no. 81272755, 81201959); the Natural Science Foundation Project of Jiangsu Province (no. 12KJB310001); China Postdoctoral Science Foundation (no. 2014M561599); Postdoctoral Research Funding Plan in Jiangsu Province (no. 1401144C); and the Specialized Research Fund for Senior Personnel Program of Jiangsu University (no. 11JDG114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appiah-Kubi, K., Wang, Y., Qian, H. et al. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumor Biol. 37, 10053–10066 (2016). https://doi.org/10.1007/s13277-016-5069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5069-z

Keywords

Navigation