Skip to main content
Log in

Significance of oncogenes and tumor suppressor genes in AML prognosis

  • Review
  • Published:
Tumor Biology

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disorder among hematologic malignancies. Several genetic alterations occur in this disease, which cause proliferative progression, reducing differentiation and apoptosis in leukemic cells as well as increasing their survival. In the genetic study of AML, genetic translocations, gene overexpression, and mutations effective upon biology and pathogenesis of this disease have been recognized. Proto-oncogenes and tumor suppressor genes, which are important in normal development of myeloid cells, are involved in the regulation of cell cycle and apoptosis, undergo mutation in this type of leukemia, and are effective in prognosis of AML subtypes. This review deals with these genes, the assessment of which can be important in the diagnosis and prognosis of patients as well as therapeutic outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grimwade D. The changing paradigm of prognostic factors in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2012;25(4):419–25.

    PubMed  Google Scholar 

  2. Dash A, Gilliland DG. Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14(1):49–64.

    CAS  PubMed  Google Scholar 

  3. Lo-Coco F, Breccia M, Noguera N, Miller Jr WH. Diagnostic value of detecting fusion proteins derived from chromosome translocations in acute leukaemia. Best Pract Res Clin Haematol. 2003;16(4):653–70.

    CAS  PubMed  Google Scholar 

  4. De Jonge H, Huls G, De Bont E. Gene expression profiling in acute myeloid leukaemia. Neth J Med. 2011;69(4):167–76.

    PubMed  Google Scholar 

  5. Ramos NR, Mo CC, Karp JE, Hourigan CS. Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J Clin Med. 2015;4(4):665–95.

    PubMed  PubMed Central  Google Scholar 

  6. Villela L, Bolaños-Meade J. Acute myeloid leukaemia: optimal management and recent developments. Drugs. 2011;71(12):1537–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rubnitz JE, Gibson B, Smith FO. Acute myeloid leukemia. Hematology/oncology clinics of North America. 2010;24(1):35–63.

    PubMed  Google Scholar 

  8. Willman CL, Whittaker MH. The molecular biology of acute myeloid leukemia. Proto-oncogene expression and function in normal and neoplastic myeloid cells. Clin Lab Med. 1990;10(4):769–96.

    CAS  PubMed  Google Scholar 

  9. Lyman SD, Jacobsen SEW. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91(4):1101–34.

    CAS  PubMed  Google Scholar 

  10. Mizuki M, Schwäble J, Steur C, Choudhary C, Agrawal S, Sargin B, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood. 2003;101(8):3164–73.

    CAS  PubMed  Google Scholar 

  11. Bullinger L. New avenues for genetics guided therapeutic approaches in AML. Acta Haematol Pol. 2014;45(4):322–9.

    Google Scholar 

  12. Martens JH, Stunnenberg HG. The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett. 2010;584(12):2662–9.

    CAS  PubMed  Google Scholar 

  13. Redner RL, Wang J, Liu JM. Chromatin remodeling and leukemia: new therapeutic paradigms. Blood. 1999;94(2):417–28.

    CAS  PubMed  Google Scholar 

  14. Brown N, Ramalho M, Pedersen EW, Moravcsik E, Solomon E, Grimwade D. PML nuclear bodies in the pathogenesis of acute promyelocytic leukemia: active players or innocent bystanders? Front Biosci (Landmark edition). 2008;14:1684–707.

    Google Scholar 

  15. Michaud J, Scott HS, Escher R. AML1 interconnected pathways of leukemogenesis. Cancer Investig. 2003;21(1):105–36.

    CAS  Google Scholar 

  16. Lo Coco F, Pisegna S, Diverio D. The AML1 gene: a transcription factor involved in the pathogenesis of myeloid and lymphoid leukemias. Haematologica. 1997;82(3):364–70.

    CAS  PubMed  Google Scholar 

  17. Fenske TS, Pengue G, Graubert TA. Dominant negative effects of the AML1/ETO fusion oncoprotein. Cell Cycle. 2005;4(1):33–6.

    CAS  PubMed  Google Scholar 

  18. Stone RM. Prognostic factors in AML in relation to (ab) normal karyotype. Best Pract Res Clin Haematol. 2009;22(4):523–8.

    CAS  PubMed  Google Scholar 

  19. Blum W, Marcucci G. New approaches in acute myeloid leukemia. Best Pract Res Clin Haematol. 2008;21(1):29–41.

    CAS  PubMed  Google Scholar 

  20. Delaunay J, Vey N, Leblanc T, Fenaux P, Rigal-Huguet F, Witz F, et al. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML Intergroup. Blood. 2003;102(2):462–9.

    CAS  PubMed  Google Scholar 

  21. Clozel T, Renneville A, Venot M, Gardin C, Kelaidi C, Leroux G, et al. Slow relapse in acute myeloid leukemia with inv(16) or t(16;16). Haematologica. 2009;94(10):1466–7.

    PubMed  PubMed Central  Google Scholar 

  22. Hartl M, Bister K. Oncogenes. In: Hughes SM, editor. Brenner’s encyclopedia of genetics. 2nd ed. San Diego: Academic Press; 2013. p. 164–6.

    Google Scholar 

  23. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996;87(3):1089–96.

    CAS  PubMed  Google Scholar 

  24. Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber Philipp B, Di Ruscio A, et al. Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia. Cancer Cell. 2013;24(5):575–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Butturini A, Gale RP. Oncogenes and leukemia. Leukemia. 1990;4(2):138–60.

    CAS  PubMed  Google Scholar 

  26. Shih L, Huang C, Wang P, Wu J, Lin T, Dunn P, et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia. 2004;18(3):466–75.

    CAS  PubMed  Google Scholar 

  27. Shih L-Y, Huang C-F, Wu J-H, Lin T-L, Dunn P, Wang P-N, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387–92.

    CAS  PubMed  Google Scholar 

  28. Whitman SP, Ruppert AS, Radmacher MD, Mrózek K, Paschka P, Langer C, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood. 2008;111(3):1552–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fröhling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol. 2005;23(26):6285–95.

    PubMed  Google Scholar 

  30. Breitenbuecher F, Schnittger S, Grundler R, Markova B, Carius B, Brecht A, et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood. 2009;113(17):4074–7.

    CAS  PubMed  Google Scholar 

  31. Scholl S, Loncarevic IF, Krause C, Kunert C, Clement JH, Höffken K. Minimal residual disease based on patient specific Flt3-ITD and -ITT mutations in acute myeloid leukemia. Leuk Res. 2005;29(7):849–53.

    CAS  PubMed  Google Scholar 

  32. Stirewalt DL, Willman CL, Radich JP. Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leuk Res. 2001;25(12):1085–8.

    CAS  PubMed  Google Scholar 

  33. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Am Soc Hematol Educ Program Book. 2013;2013(1):220–6.

    Google Scholar 

  34. Nguyen LA, Pandolfi PP, Aikawa Y, Tagata Y, Ohki M, Kitabayashi I. Physical and functional link of the leukemia-associated factors AML1 and PML. Blood. 2005;105(1):292–300.

    CAS  PubMed  Google Scholar 

  35. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell. 1996;87(4):697–708.

    CAS  PubMed  Google Scholar 

  36. Cameron ER, Neil JC. The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene. 2004;23(24):4308–14.

    CAS  PubMed  Google Scholar 

  37. Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh E-J, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1(1):63–74.

    CAS  PubMed  Google Scholar 

  38. Tang J-L, Hou H-A, Chen C-Y, Liu C-Y, Chou W-C, Tseng M-H. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114(26):5352–61.

    CAS  PubMed  Google Scholar 

  39. Al-Baradie R, Yamada K, Hilaire CS, Chan W-M, Andrews C, McIntosh N, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71(5):1195–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang F, Guo Y, Chen Q, Yang Z, Ning N, Zhang Y, et al. Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes. J Hematol Oncol. 2013;6:73.

    PubMed  PubMed Central  Google Scholar 

  41. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.

    PubMed  PubMed Central  Google Scholar 

  42. Merup M, Lazarevic V, Nahi H, Andreasson B, Malm C, Nilsson L, et al. Different outcome of allogeneic transplantation in myelofibrosis using conventional or reduced‐intensity conditioning regimens. Br J Haematol. 2006;135(3):367–73.

    CAS  PubMed  Google Scholar 

  43. Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, et al. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood. 2008;112(3):805–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shuai X, Zhou D, Shen T, Wu Y, Zhang J, Wang X, et al. Overexpression of the novel oncogene SALL4 and activation of the Wnt/β-catenin pathway in myelodysplastic syndromes. Cancer Genet Cytogenet. 2009;194(2):119–24.

    CAS  PubMed  Google Scholar 

  45. Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, et al. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci. 2007;104(25):10494–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen Q, Qian J, Lin J, Yang J, Li Y, Wang C, et al. Expression of SALL4 gene in patients with acute and chronic myeloid leukemia. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui. Journal of Experimental Hematology/Chinese Association of Pathophysiology. 2013;21(2):315–9.

    CAS  Google Scholar 

  47. Ma J-c, Qian J, Lin J, Qian W, Yang J, Wang C-z, et al. Aberrant hypomethylation of SALL4 gene is associated with intermediate and poor karyotypes in acute myeloid leukemia. Clin Biochem. 2013;46(4):304–7.

    PubMed  Google Scholar 

  48. Jeong H-W, Cui W, Yang Y, Lu J, He J, Li A, et al. SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes. PLoS ONE. 2011;6(4):e18372.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hinds PW, Weinberg RA. Tumor suppressor genes. Curr Opinion Gen Dev. 1994;4(1):135–41.

    CAS  Google Scholar 

  50. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9(4):361–77.

    CAS  PubMed  Google Scholar 

  51. Menke AL, Van der Eb A, Jochemsen A. The Wilms’ tumor 1 gene: oncogene or tumor suppressor gene? Int Rev Cytol. 1998;181:151–212.

    CAS  PubMed  Google Scholar 

  52. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol. 2002;116(2):409–20.

    CAS  PubMed  Google Scholar 

  53. Owen C, Fitzgibbon J, Paschka P. The clinical relevance of Wilms Tumour 1 (WT1) gene mutations in acute leukaemia. Hematol Oncol. 2010;28(1):13–9.

    CAS  PubMed  Google Scholar 

  54. Svensson E, Eriksson H, Gekas C, Olofsson T, Richter J, Gullberg U. DNA-binding dependent and independent functions of WT1 protein during human hematopoiesis. Exp Cell Res. 2005;308(1):211–21.

    CAS  PubMed  Google Scholar 

  55. Huff V. Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer. 2011;11(2):111–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Summers K, Stevens J, Kakkas I, Smith M, Smith L, Macdougall F, et al. Wilms’ tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia. 2007;21(3):550–1.

    CAS  PubMed  Google Scholar 

  57. Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrózek K, Maharry K, et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2008;26(28):4595–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M, et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood. 2009;113(23):5951–60.

    CAS  PubMed  Google Scholar 

  59. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA. The Wilms tumor suppressor WT1 directs stage‐specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001;20(8):1897–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Martin-Martin N, Sutherland JD, Carracedo A. PML: not all about tumor suppression. Front Oncol. 2013;3:200.

    PubMed  PubMed Central  Google Scholar 

  61. Sternsdorf T, Grötzinger T, Jensen K, Will H. Nuclear dots: actors on many stages. Immunobiology. 1997;198(1):307–31.

    CAS  PubMed  Google Scholar 

  62. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito SI, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000;406(6792):207–10.

    CAS  PubMed  Google Scholar 

  63. Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell. 2002;108(2):165–70.

    CAS  PubMed  Google Scholar 

  64. Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20(49):7223–33.

    CAS  PubMed  Google Scholar 

  65. Gamell C, Jan Paul P, Haupt Y, Haupt S. PML tumour suppression and beyond: therapeutic implications. FEBS Lett. 2014;588(16):2653–62.

    CAS  PubMed  Google Scholar 

  66. Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene. 2003;22(56):9048–57.

    CAS  PubMed  Google Scholar 

  67. Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood. 2006;107(8):3330–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Meloni G, Diverio D, Vignetti M, Avvisati G, Capria S, Petti MC, et al. Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RARα fusion gene. Blood. 1997;90(3):1321–5.

    CAS  PubMed  Google Scholar 

  69. Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113(25):6403–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301.

    PubMed  Google Scholar 

  72. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chou W-C, Chou S-C, Liu C-Y, Chen C-Y, Hou H-A, Kuo Y-Y, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–10.

    CAS  PubMed  Google Scholar 

  74. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26(5):934–42.

    CAS  PubMed  Google Scholar 

  76. Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009;114(15):3285–91.

    CAS  PubMed  Google Scholar 

  77. Lorsbach R, Moore J, Mathew S, Raimondi S, Mukatira S, Downing J. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t (10; 11)(q22; q23). Leukemia. 2003;17(3):637–41.

    CAS  PubMed  Google Scholar 

  78. Estey EH. Acute myeloid leukemia: 2013 update on risk‐stratification and management. Am J Hematol. 2013;88(4):317–27.

    Google Scholar 

  79. Zheng J, Wang X, Hu Y, Yang J, Liu J, He Y, et al. A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China. Cytometry B Clin Cytom. 2008;74(1):25–9.

    PubMed  Google Scholar 

  80. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93(9):3074–80.

    CAS  PubMed  Google Scholar 

  81. Gaidzik V, Döhner K. Prognostic implications of gene mutations in acute myeloid leukemia with normal cytogenetics. Semin Oncol. 2008;35(4):346–55. doi: 10.1053/j.seminoncol.2008.04.005.

  82. Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv (16) and t (8; 21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11.

    CAS  PubMed  Google Scholar 

  83. Preudhomme C, Sagot C, Boissel N, Cayuela J-M, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–23.

    CAS  PubMed  Google Scholar 

  84. Liang D-C, Liu H-C, Yang C-P, Jaing T-H, Hung I-J, Yeh T-C, et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013;121(15):2988–95.

    CAS  PubMed  Google Scholar 

  85. Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong H-W, Luo HR, et al. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood. 2013;121(8):1413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chong PS, Zhou J, Cheong L-L, Liu S-C, Qian J, Guo T, et al. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia. Cancer Res. 2014;74(11):3043–53.

    CAS  PubMed  Google Scholar 

  87. Park JE, Yuen HF, Zhou JB, Al‐aidaroos AQO, Guo K, Valk PJ, et al. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia. EMBO Mol Med. 2013;5(9):1351–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Qu S, Liu B, Guo X, Shi H, Zhou M, Li L, et al. Independent oncogenic and therapeutic significance of phosphatase PRL-3 in FLT3-ITD–negative acute myeloid leukemia. Cancer. 2014;120(14):2130–41.

    CAS  PubMed  Google Scholar 

  89. Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D, et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol. 1999;105(4):894–900.

    CAS  PubMed  Google Scholar 

  90. Liu D, Jiang H, Qin Y-Z, Xu L-P, Jiang Q, Zhang X-H, et al. KIT mutation versus MRD, which is more important to predict relapse of acute myeloid leukemia with t (8; 21)? Blood. 2013;122(21):1309–9.

    Google Scholar 

  91. Naoe T, Kiyoi H. Normal and oncogenic FLT3. Cell Mol Life Sci. 2004;61(23):2932–8.

    CAS  PubMed  Google Scholar 

  92. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100(1):59–66.

    CAS  PubMed  Google Scholar 

  93. Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t (15; 17), t (8; 21) or inv (16). Hematol J. 2002;3(6):283–9.

    CAS  PubMed  Google Scholar 

  94. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.

    CAS  PubMed  Google Scholar 

  95. Chan IT, Gilliland DG. Oncogenic K-ras in mouse models of myeloproliferative disease and acute myeloid leukemia. Cell Cycle. 2004;3(5):534–5.

    Google Scholar 

  96. Neubauer A, Dodge R, George S, Davey F, Silver R, Schiffer C, et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood. 1994;83(6):1603–11.

    CAS  PubMed  Google Scholar 

  97. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97(11):3589–95.

    CAS  PubMed  Google Scholar 

  98. Lutterbach B, Hiebert S. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene. 2000;245(2):223–35.

    CAS  PubMed  Google Scholar 

  99. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84(2):321–30.

    CAS  PubMed  Google Scholar 

  100. Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N, et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest. 2013;123(9):3876.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol. 2012;30(25):3109–18.

    PubMed  PubMed Central  Google Scholar 

  102. Schessl C, Rawat VPS, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115(8):2159–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wieser R. The oncogene and developmental regulator EVI1: Expression, biochemical properties, and biological functions. Gene. 2007;396(2):346–57.

    CAS  PubMed  Google Scholar 

  104. Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11(12):2022–31.

    CAS  PubMed  Google Scholar 

  105. Lennon PA, Abruzzo LV, Medeiros LJ, Cromwell C, Zhang X, Yin CC, et al. Aberrant EVI1 expression in acute myeloid leukemias associated with the t (3; 8)(q26; q24). Cancer Genet Cytogenet. 2007;177(1):37–42.

    CAS  PubMed  Google Scholar 

  106. Gröschel S, Lugthart S, Schlenk RF, Valk PJM, Eiwen K, Goudswaard C, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28(12):2101–7.

    PubMed  Google Scholar 

  107. Shearer BM, Knudson RA, Flynn HC, Ketterling RP. Development of a D-FISH method to detect DEK/CAN fusion resulting from t(6;9)(p23;q34) in patients with acute myelogenous leukemia. Leukemia. 2005;19(1):126–31.

    CAS  PubMed  Google Scholar 

  108. Logan GE, Mor-Vaknin N, Braunschweig T, Jost E, Schmidt PV, Markovitz DM, et al. DEK oncogene expression during normal hematopoiesis and in acute myeloid leukemia (AML). Blood Cell Mol Dis. 2015;54(1):123–31.

    CAS  Google Scholar 

  109. Sandahl JD, Coenen EA, Forestier E, Harbott J, Johansson B, Kerndrup G, et al. t (6; 9)(p22; q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014;99(5):865–72.

    PubMed  PubMed Central  Google Scholar 

  110. Heuser M, Beutel G, Krauter J, Döhner K, von Neuhoff N, Schlegelberger B, et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood. 2006;108(12):3898–905.

    CAS  PubMed  Google Scholar 

  111. Grosveld GC. MN1, a novel player in human AML. Blood Cells Mol Dis. 2007;39(3):336–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu T, Jankovic D, Brault L, Ehret S, Baty F, Stavropoulou V, et al. Functional characterization of high levels of meningioma 1 as collaborating oncogene in acute leukemia. Leukemia. 2010;24(3):601–12.

    CAS  PubMed  Google Scholar 

  113. Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, et al. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005;7(4):351–62.

    CAS  PubMed  Google Scholar 

  114. Siu Y-T, Jin D-Y. CREB—a real culprit in oncogenesis. FEBS J. 2007;274(13):3224–32.

    CAS  PubMed  Google Scholar 

  115. Kinjo K, Sandoval S, Sakamoto KM, Shankar DB. The role of CREB as a proto-oncogene in hematopoiesis. Cell Cycle. 2005;4(9):1134–5.

    CAS  PubMed  Google Scholar 

  116. Ho PA, Alonzo TA, Kopecky KJ, Miller KL, Kuhn J, Zeng R, et al. Molecular alterations of the IDH1 gene in AML: a Children’s Oncology Group and Southwest Oncology Group study. Leukemia. 2010;24(5):909–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chou W-C, Huang H-H, Hou H-A, Chen C-Y, Tang J-L, Yao M, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086–94.

    CAS  PubMed  Google Scholar 

  118. Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrózek K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118(26):6920–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011;29(10):1373–81.

    PubMed  PubMed Central  Google Scholar 

  120. Nakajima H, Kunimoto H. TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci. 2014;105(9):1093–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hou H-A, Kuo Y-Y, Liu C-Y, Chou W-C, Lee MC, Chen C-Y, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68.

    CAS  PubMed  Google Scholar 

  122. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res. 2013;37(11):1445–50.

    CAS  PubMed  Google Scholar 

  124. King-Underwood L, Renshaw J, Pritchard-Jones K. Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood. 1996;87(6):2171–9.

    CAS  PubMed  Google Scholar 

  125. Yang L, Han Y, Saiz FS, Minden M. A tumor suppressor and oncogene: the WT1 story. Leukemia. 2007;21(5):868–76.

    CAS  PubMed  Google Scholar 

  126. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J, et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia. 2002;16(7):1381–9.

    CAS  PubMed  Google Scholar 

  127. Bally C, Adès L, Renneville A, Sebert M, Eclache V, Preudhomme C, et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res. 2014;38(7):751–5.

    CAS  PubMed  Google Scholar 

  128. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 2001;19(5):1405–13.

    CAS  PubMed  Google Scholar 

  129. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005;106(9):3150–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC, Shannon K, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 2010;24(13):1389–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML//RAR[alpha] and the leukemic stem cell. Leukemia. 2004;18(7):1169–75.

    CAS  PubMed  Google Scholar 

  132. Wen X-M, Lin J, Yang J, Yao D-M, Deng Z-Q, Tang C-Y, et al. Double CEBPA mutations are prognostically favorable in non-M3 acute myeloid leukemia patients with wild-type NPM1 and FLT3-ITD. Int J Clin Exp Pathol. 2014;7(10):6832.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ho PA, Alonzo TA, Gerbing RB, Pollard J, Stirewalt DL, Hurwitz C, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2009;113(26):6558–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Fasan A, Alpermann T, Haferlach C, Grossmann V, Roller A, Kohlmann A, et al. Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases. PLoS One. 2013;8(2):e54365.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Fuchs O. Growth-inhibiting activity of transcription factor C/EBPalpha, its role in haematopoiesis and its tumour suppressor or oncogenic properties in leukaemias. Folia Biol. 2006;53(3):97–108.

    Google Scholar 

  136. Agrawal S, Hofmann W-K, Tidow N, Ehrich M, van den Boom D, Koschmieder S, et al. The C/EBPδ tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood. 2007;109(9):3895–905.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper forms part of Maria Kavianpour’s M.Sc. thesis. We extend special thanks to Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran (Grant Number Th94/7), for the financial support. We appreciate the contribution of all our colleagues in the Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy.

Authors’ contributions

Najmaldin Saki conceived the manuscript and revised it. Maria Kavianpour, Ahmad Ahmad Zadeh, and Saeid Shahrabi wrote the manuscript and prepared the tables and figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Conflict of interest

None

Additional information

Highlights

Detection of oncogene or tumor suppressor gene mutations has been proposed for consideration of AML prognosis.

All oncogenes and tumor suppressor gene mutations cause poor prognosis in AML patients except for C/EBPα.

Oncogene or tumor suppressor gene mutations can be used as potential MRD markers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavianpour, M., Ahmadzadeh, A., Shahrabi, S. et al. Significance of oncogenes and tumor suppressor genes in AML prognosis. Tumor Biol. 37, 10041–10052 (2016). https://doi.org/10.1007/s13277-016-5067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5067-1

Keywords

Navigation