Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 10041–10052 | Cite as

Significance of oncogenes and tumor suppressor genes in AML prognosis

  • Maria Kavianpour
  • Ahmad Ahmadzadeh
  • Saeid Shahrabi
  • Najmaldin Saki
Review

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disorder among hematologic malignancies. Several genetic alterations occur in this disease, which cause proliferative progression, reducing differentiation and apoptosis in leukemic cells as well as increasing their survival. In the genetic study of AML, genetic translocations, gene overexpression, and mutations effective upon biology and pathogenesis of this disease have been recognized. Proto-oncogenes and tumor suppressor genes, which are important in normal development of myeloid cells, are involved in the regulation of cell cycle and apoptosis, undergo mutation in this type of leukemia, and are effective in prognosis of AML subtypes. This review deals with these genes, the assessment of which can be important in the diagnosis and prognosis of patients as well as therapeutic outcome.

Keywords

Acute myeloid leukemia Oncogenes Tumor suppressor genes 

Notes

Acknowledgments

This paper forms part of Maria Kavianpour’s M.Sc. thesis. We extend special thanks to Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran (Grant Number Th94/7), for the financial support. We appreciate the contribution of all our colleagues in the Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy.

Authors’ contributions

Najmaldin Saki conceived the manuscript and revised it. Maria Kavianpour, Ahmad Ahmad Zadeh, and Saeid Shahrabi wrote the manuscript and prepared the tables and figure.

Compliance with ethical standard

Conflict of interest

None

References

  1. 1.
    Grimwade D. The changing paradigm of prognostic factors in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2012;25(4):419–25.PubMedGoogle Scholar
  2. 2.
    Dash A, Gilliland DG. Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14(1):49–64.PubMedGoogle Scholar
  3. 3.
    Lo-Coco F, Breccia M, Noguera N, Miller Jr WH. Diagnostic value of detecting fusion proteins derived from chromosome translocations in acute leukaemia. Best Pract Res Clin Haematol. 2003;16(4):653–70.PubMedGoogle Scholar
  4. 4.
    De Jonge H, Huls G, De Bont E. Gene expression profiling in acute myeloid leukaemia. Neth J Med. 2011;69(4):167–76.PubMedGoogle Scholar
  5. 5.
    Ramos NR, Mo CC, Karp JE, Hourigan CS. Current approaches in the treatment of relapsed and refractory acute myeloid leukemia. J Clin Med. 2015;4(4):665–95.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Villela L, Bolaños-Meade J. Acute myeloid leukaemia: optimal management and recent developments. Drugs. 2011;71(12):1537–50.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Rubnitz JE, Gibson B, Smith FO. Acute myeloid leukemia. Hematology/oncology clinics of North America. 2010;24(1):35–63.PubMedGoogle Scholar
  8. 8.
    Willman CL, Whittaker MH. The molecular biology of acute myeloid leukemia. Proto-oncogene expression and function in normal and neoplastic myeloid cells. Clin Lab Med. 1990;10(4):769–96.PubMedGoogle Scholar
  9. 9.
    Lyman SD, Jacobsen SEW. c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91(4):1101–34.PubMedGoogle Scholar
  10. 10.
    Mizuki M, Schwäble J, Steur C, Choudhary C, Agrawal S, Sargin B, et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood. 2003;101(8):3164–73.PubMedGoogle Scholar
  11. 11.
    Bullinger L. New avenues for genetics guided therapeutic approaches in AML. Acta Haematol Pol. 2014;45(4):322–9.Google Scholar
  12. 12.
    Martens JH, Stunnenberg HG. The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett. 2010;584(12):2662–9.PubMedGoogle Scholar
  13. 13.
    Redner RL, Wang J, Liu JM. Chromatin remodeling and leukemia: new therapeutic paradigms. Blood. 1999;94(2):417–28.PubMedGoogle Scholar
  14. 14.
    Brown N, Ramalho M, Pedersen EW, Moravcsik E, Solomon E, Grimwade D. PML nuclear bodies in the pathogenesis of acute promyelocytic leukemia: active players or innocent bystanders? Front Biosci (Landmark edition). 2008;14:1684–707.Google Scholar
  15. 15.
    Michaud J, Scott HS, Escher R. AML1 interconnected pathways of leukemogenesis. Cancer Investig. 2003;21(1):105–36.Google Scholar
  16. 16.
    Lo Coco F, Pisegna S, Diverio D. The AML1 gene: a transcription factor involved in the pathogenesis of myeloid and lymphoid leukemias. Haematologica. 1997;82(3):364–70.PubMedGoogle Scholar
  17. 17.
    Fenske TS, Pengue G, Graubert TA. Dominant negative effects of the AML1/ETO fusion oncoprotein. Cell Cycle. 2005;4(1):33–6.PubMedGoogle Scholar
  18. 18.
    Stone RM. Prognostic factors in AML in relation to (ab) normal karyotype. Best Pract Res Clin Haematol. 2009;22(4):523–8.PubMedGoogle Scholar
  19. 19.
    Blum W, Marcucci G. New approaches in acute myeloid leukemia. Best Pract Res Clin Haematol. 2008;21(1):29–41.PubMedGoogle Scholar
  20. 20.
    Delaunay J, Vey N, Leblanc T, Fenaux P, Rigal-Huguet F, Witz F, et al. Prognosis of inv(16)/t(16;16) acute myeloid leukemia (AML): a survey of 110 cases from the French AML Intergroup. Blood. 2003;102(2):462–9.PubMedGoogle Scholar
  21. 21.
    Clozel T, Renneville A, Venot M, Gardin C, Kelaidi C, Leroux G, et al. Slow relapse in acute myeloid leukemia with inv(16) or t(16;16). Haematologica. 2009;94(10):1466–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hartl M, Bister K. Oncogenes. In: Hughes SM, editor. Brenner’s encyclopedia of genetics. 2nd ed. San Diego: Academic Press; 2013. p. 164–6.Google Scholar
  23. 23.
    Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996;87(3):1089–96.PubMedGoogle Scholar
  24. 24.
    Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber Philipp B, Di Ruscio A, et al. Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia. Cancer Cell. 2013;24(5):575–88.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Butturini A, Gale RP. Oncogenes and leukemia. Leukemia. 1990;4(2):138–60.PubMedGoogle Scholar
  26. 26.
    Shih L, Huang C, Wang P, Wu J, Lin T, Dunn P, et al. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia. 2004;18(3):466–75.PubMedGoogle Scholar
  27. 27.
    Shih L-Y, Huang C-F, Wu J-H, Lin T-L, Dunn P, Wang P-N, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387–92.PubMedGoogle Scholar
  28. 28.
    Whitman SP, Ruppert AS, Radmacher MD, Mrózek K, Paschka P, Langer C, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood. 2008;111(3):1552–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fröhling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol. 2005;23(26):6285–95.PubMedGoogle Scholar
  30. 30.
    Breitenbuecher F, Schnittger S, Grundler R, Markova B, Carius B, Brecht A, et al. Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. Blood. 2009;113(17):4074–7.PubMedGoogle Scholar
  31. 31.
    Scholl S, Loncarevic IF, Krause C, Kunert C, Clement JH, Höffken K. Minimal residual disease based on patient specific Flt3-ITD and -ITT mutations in acute myeloid leukemia. Leuk Res. 2005;29(7):849–53.PubMedGoogle Scholar
  32. 32.
    Stirewalt DL, Willman CL, Radich JP. Quantitative, real-time polymerase chain reactions for FLT3 internal tandem duplications are highly sensitive and specific. Leuk Res. 2001;25(12):1085–8.PubMedGoogle Scholar
  33. 33.
    Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Am Soc Hematol Educ Program Book. 2013;2013(1):220–6.Google Scholar
  34. 34.
    Nguyen LA, Pandolfi PP, Aikawa Y, Tagata Y, Ohki M, Kitabayashi I. Physical and functional link of the leukemia-associated factors AML1 and PML. Blood. 2005;105(1):292–300.PubMedGoogle Scholar
  35. 35.
    Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell. 1996;87(4):697–708.PubMedGoogle Scholar
  36. 36.
    Cameron ER, Neil JC. The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene. 2004;23(24):4308–14.PubMedGoogle Scholar
  37. 37.
    Higuchi M, O’Brien D, Kumaravelu P, Lenny N, Yeoh E-J, Downing JR. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell. 2002;1(1):63–74.PubMedGoogle Scholar
  38. 38.
    Tang J-L, Hou H-A, Chen C-Y, Liu C-Y, Chou W-C, Tseng M-H. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114(26):5352–61.PubMedGoogle Scholar
  39. 39.
    Al-Baradie R, Yamada K, Hilaire CS, Chan W-M, Andrews C, McIntosh N, et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am J Hum Genet. 2002;71(5):1195–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang F, Guo Y, Chen Q, Yang Z, Ning N, Zhang Y, et al. Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes. J Hematol Oncol. 2013;6:73.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Merup M, Lazarevic V, Nahi H, Andreasson B, Malm C, Nilsson L, et al. Different outcome of allogeneic transplantation in myelofibrosis using conventional or reduced‐intensity conditioning regimens. Br J Haematol. 2006;135(3):367–73.PubMedGoogle Scholar
  43. 43.
    Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, et al. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood. 2008;112(3):805–13.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Shuai X, Zhou D, Shen T, Wu Y, Zhang J, Wang X, et al. Overexpression of the novel oncogene SALL4 and activation of the Wnt/β-catenin pathway in myelodysplastic syndromes. Cancer Genet Cytogenet. 2009;194(2):119–24.PubMedGoogle Scholar
  45. 45.
    Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, et al. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci. 2007;104(25):10494–9.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chen Q, Qian J, Lin J, Yang J, Li Y, Wang C, et al. Expression of SALL4 gene in patients with acute and chronic myeloid leukemia. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui. Journal of Experimental Hematology/Chinese Association of Pathophysiology. 2013;21(2):315–9.Google Scholar
  47. 47.
    Ma J-c, Qian J, Lin J, Qian W, Yang J, Wang C-z, et al. Aberrant hypomethylation of SALL4 gene is associated with intermediate and poor karyotypes in acute myeloid leukemia. Clin Biochem. 2013;46(4):304–7.PubMedGoogle Scholar
  48. 48.
    Jeong H-W, Cui W, Yang Y, Lu J, He J, Li A, et al. SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes. PLoS ONE. 2011;6(4):e18372.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Hinds PW, Weinberg RA. Tumor suppressor genes. Curr Opinion Gen Dev. 1994;4(1):135–41.Google Scholar
  50. 50.
    Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9(4):361–77.PubMedGoogle Scholar
  51. 51.
    Menke AL, Van der Eb A, Jochemsen A. The Wilms’ tumor 1 gene: oncogene or tumor suppressor gene? Int Rev Cytol. 1998;181:151–212.PubMedGoogle Scholar
  52. 52.
    Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol. 2002;116(2):409–20.PubMedGoogle Scholar
  53. 53.
    Owen C, Fitzgibbon J, Paschka P. The clinical relevance of Wilms Tumour 1 (WT1) gene mutations in acute leukaemia. Hematol Oncol. 2010;28(1):13–9.PubMedGoogle Scholar
  54. 54.
    Svensson E, Eriksson H, Gekas C, Olofsson T, Richter J, Gullberg U. DNA-binding dependent and independent functions of WT1 protein during human hematopoiesis. Exp Cell Res. 2005;308(1):211–21.PubMedGoogle Scholar
  55. 55.
    Huff V. Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer. 2011;11(2):111–21.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Summers K, Stevens J, Kakkas I, Smith M, Smith L, Macdougall F, et al. Wilms’ tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia. 2007;21(3):550–1.PubMedGoogle Scholar
  57. 57.
    Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrózek K, Maharry K, et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. J Clin Oncol. 2008;26(28):4595–602.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M, et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood. 2009;113(23):5951–60.PubMedGoogle Scholar
  59. 59.
    Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA. The Wilms tumor suppressor WT1 directs stage‐specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001;20(8):1897–909.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Martin-Martin N, Sutherland JD, Carracedo A. PML: not all about tumor suppression. Front Oncol. 2013;3:200.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Sternsdorf T, Grötzinger T, Jensen K, Will H. Nuclear dots: actors on many stages. Immunobiology. 1997;198(1):307–31.PubMedGoogle Scholar
  62. 62.
    Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito SI, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000;406(6792):207–10.PubMedGoogle Scholar
  63. 63.
    Salomoni P, Pandolfi PP. The role of PML in tumor suppression. Cell. 2002;108(2):165–70.PubMedGoogle Scholar
  64. 64.
    Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20(49):7223–33.PubMedGoogle Scholar
  65. 65.
    Gamell C, Jan Paul P, Haupt Y, Haupt S. PML tumour suppression and beyond: therapeutic implications. FEBS Lett. 2014;588(16):2653–62.PubMedGoogle Scholar
  66. 66.
    Bernardi R, Pandolfi PP. Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene. 2003;22(56):9048–57.PubMedGoogle Scholar
  67. 67.
    Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood. 2006;107(8):3330–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Meloni G, Diverio D, Vignetti M, Avvisati G, Capria S, Petti MC, et al. Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RARα fusion gene. Blood. 1997;90(3):1321–5.PubMedGoogle Scholar
  69. 69.
    Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113(25):6403–10.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144–7.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301.PubMedGoogle Scholar
  72. 72.
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11–24.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Chou W-C, Chou S-C, Liu C-Y, Chen C-Y, Hou H-A, Kuo Y-Y, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011;118(14):3803–10.PubMedGoogle Scholar
  74. 74.
    Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26(5):934–42.PubMedGoogle Scholar
  76. 76.
    Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009;114(15):3285–91.PubMedGoogle Scholar
  77. 77.
    Lorsbach R, Moore J, Mathew S, Raimondi S, Mukatira S, Downing J. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t (10; 11)(q22; q23). Leukemia. 2003;17(3):637–41.PubMedGoogle Scholar
  78. 78.
    Estey EH. Acute myeloid leukemia: 2013 update on risk‐stratification and management. Am J Hematol. 2013;88(4):317–27.Google Scholar
  79. 79.
    Zheng J, Wang X, Hu Y, Yang J, Liu J, He Y, et al. A correlation study of immunophenotypic, cytogenetic, and clinical features of 180 AML patients in China. Cytometry B Clin Cytom. 2008;74(1):25–9.PubMedGoogle Scholar
  80. 80.
    Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93(9):3074–80.PubMedGoogle Scholar
  81. 81.
    Gaidzik V, Döhner K. Prognostic implications of gene mutations in acute myeloid leukemia with normal cytogenetics. Semin Oncol. 2008;35(4):346–55. doi:  10.1053/j.seminoncol.2008.04.005.
  82. 82.
    Paschka P, Marcucci G, Ruppert AS, Mrózek K, Chen H, Kittles RA, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv (16) and t (8; 21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11.PubMedGoogle Scholar
  83. 83.
    Preudhomme C, Sagot C, Boissel N, Cayuela J-M, Tigaud I, de Botton S, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100(8):2717–23.PubMedGoogle Scholar
  84. 84.
    Liang D-C, Liu H-C, Yang C-P, Jaing T-H, Hung I-J, Yeh T-C, et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013;121(15):2988–95.PubMedGoogle Scholar
  85. 85.
    Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong H-W, Luo HR, et al. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood. 2013;121(8):1413–21.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Chong PS, Zhou J, Cheong L-L, Liu S-C, Qian J, Guo T, et al. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia. Cancer Res. 2014;74(11):3043–53.PubMedGoogle Scholar
  87. 87.
    Park JE, Yuen HF, Zhou JB, Al‐aidaroos AQO, Guo K, Valk PJ, et al. Oncogenic roles of PRL-3 in FLT3-ITD induced acute myeloid leukaemia. EMBO Mol Med. 2013;5(9):1351–66.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Qu S, Liu B, Guo X, Shi H, Zhou M, Li L, et al. Independent oncogenic and therapeutic significance of phosphatase PRL-3 in FLT3-ITD–negative acute myeloid leukemia. Cancer. 2014;120(14):2130–41.PubMedGoogle Scholar
  89. 89.
    Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D, et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol. 1999;105(4):894–900.PubMedGoogle Scholar
  90. 90.
    Liu D, Jiang H, Qin Y-Z, Xu L-P, Jiang Q, Zhang X-H, et al. KIT mutation versus MRD, which is more important to predict relapse of acute myeloid leukemia with t (8; 21)? Blood. 2013;122(21):1309–9.Google Scholar
  91. 91.
    Naoe T, Kiyoi H. Normal and oncogenic FLT3. Cell Mol Life Sci. 2004;61(23):2932–8.PubMedGoogle Scholar
  92. 92.
    Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002;100(1):59–66.PubMedGoogle Scholar
  93. 93.
    Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, et al. Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t (15; 17), t (8; 21) or inv (16). Hematol J. 2002;3(6):283–9.PubMedGoogle Scholar
  94. 94.
    Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752–9.PubMedGoogle Scholar
  95. 95.
    Chan IT, Gilliland DG. Oncogenic K-ras in mouse models of myeloproliferative disease and acute myeloid leukemia. Cell Cycle. 2004;3(5):534–5.Google Scholar
  96. 96.
    Neubauer A, Dodge R, George S, Davey F, Silver R, Schiffer C, et al. Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood. 1994;83(6):1603–11.PubMedGoogle Scholar
  97. 97.
    Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97(11):3589–95.PubMedGoogle Scholar
  98. 98.
    Lutterbach B, Hiebert S. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene. 2000;245(2):223–35.PubMedGoogle Scholar
  99. 99.
    Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84(2):321–30.PubMedGoogle Scholar
  100. 100.
    Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N, et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest. 2013;123(9):3876.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol. 2012;30(25):3109–18.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Schessl C, Rawat VPS, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest. 2005;115(8):2159–68.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wieser R. The oncogene and developmental regulator EVI1: Expression, biochemical properties, and biological functions. Gene. 2007;396(2):346–57.PubMedGoogle Scholar
  104. 104.
    Nucifora G. The EVI1 gene in myeloid leukemia. Leukemia. 1997;11(12):2022–31.PubMedGoogle Scholar
  105. 105.
    Lennon PA, Abruzzo LV, Medeiros LJ, Cromwell C, Zhang X, Yin CC, et al. Aberrant EVI1 expression in acute myeloid leukemias associated with the t (3; 8)(q26; q24). Cancer Genet Cytogenet. 2007;177(1):37–42.PubMedGoogle Scholar
  106. 106.
    Gröschel S, Lugthart S, Schlenk RF, Valk PJM, Eiwen K, Goudswaard C, et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol. 2010;28(12):2101–7.PubMedGoogle Scholar
  107. 107.
    Shearer BM, Knudson RA, Flynn HC, Ketterling RP. Development of a D-FISH method to detect DEK/CAN fusion resulting from t(6;9)(p23;q34) in patients with acute myelogenous leukemia. Leukemia. 2005;19(1):126–31.PubMedGoogle Scholar
  108. 108.
    Logan GE, Mor-Vaknin N, Braunschweig T, Jost E, Schmidt PV, Markovitz DM, et al. DEK oncogene expression during normal hematopoiesis and in acute myeloid leukemia (AML). Blood Cell Mol Dis. 2015;54(1):123–31.Google Scholar
  109. 109.
    Sandahl JD, Coenen EA, Forestier E, Harbott J, Johansson B, Kerndrup G, et al. t (6; 9)(p22; q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014;99(5):865–72.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Heuser M, Beutel G, Krauter J, Döhner K, von Neuhoff N, Schlegelberger B, et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood. 2006;108(12):3898–905.PubMedGoogle Scholar
  111. 111.
    Grosveld GC. MN1, a novel player in human AML. Blood Cells Mol Dis. 2007;39(3):336–9.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Liu T, Jankovic D, Brault L, Ehret S, Baty F, Stavropoulou V, et al. Functional characterization of high levels of meningioma 1 as collaborating oncogene in acute leukemia. Leukemia. 2010;24(3):601–12.PubMedGoogle Scholar
  113. 113.
    Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, et al. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005;7(4):351–62.PubMedGoogle Scholar
  114. 114.
    Siu Y-T, Jin D-Y. CREB—a real culprit in oncogenesis. FEBS J. 2007;274(13):3224–32.PubMedGoogle Scholar
  115. 115.
    Kinjo K, Sandoval S, Sakamoto KM, Shankar DB. The role of CREB as a proto-oncogene in hematopoiesis. Cell Cycle. 2005;4(9):1134–5.PubMedGoogle Scholar
  116. 116.
    Ho PA, Alonzo TA, Kopecky KJ, Miller KL, Kuhn J, Zeng R, et al. Molecular alterations of the IDH1 gene in AML: a Children’s Oncology Group and Southwest Oncology Group study. Leukemia. 2010;24(5):909–13.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Chou W-C, Huang H-H, Hou H-A, Chen C-Y, Tang J-L, Yao M, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086–94.PubMedGoogle Scholar
  118. 118.
    Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrózek K, et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood. 2011;118(26):6920–9.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011;29(10):1373–81.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Nakajima H, Kunimoto H. TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci. 2014;105(9):1093–9.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Hou H-A, Kuo Y-Y, Liu C-Y, Chou W-C, Lee MC, Chen C-Y, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68.PubMedGoogle Scholar
  122. 122.
    Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res. 2013;37(11):1445–50.PubMedGoogle Scholar
  124. 124.
    King-Underwood L, Renshaw J, Pritchard-Jones K. Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood. 1996;87(6):2171–9.PubMedGoogle Scholar
  125. 125.
    Yang L, Han Y, Saiz FS, Minden M. A tumor suppressor and oncogene: the WT1 story. Leukemia. 2007;21(5):868–76.PubMedGoogle Scholar
  126. 126.
    Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J, et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia. 2002;16(7):1381–9.PubMedGoogle Scholar
  127. 127.
    Bally C, Adès L, Renneville A, Sebert M, Eclache V, Preudhomme C, et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res. 2014;38(7):751–5.PubMedGoogle Scholar
  128. 128.
    Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 2001;19(5):1405–13.PubMedGoogle Scholar
  129. 129.
    Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T, et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood. 2005;106(9):3150–9.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhao Z, Zuber J, Diaz-Flores E, Lintault L, Kogan SC, Shannon K, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 2010;24(13):1389–402.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Puccetti E, Ruthardt M. Acute promyelocytic leukemia: PML//RAR[alpha] and the leukemic stem cell. Leukemia. 2004;18(7):1169–75.PubMedGoogle Scholar
  132. 132.
    Wen X-M, Lin J, Yang J, Yao D-M, Deng Z-Q, Tang C-Y, et al. Double CEBPA mutations are prognostically favorable in non-M3 acute myeloid leukemia patients with wild-type NPM1 and FLT3-ITD. Int J Clin Exp Pathol. 2014;7(10):6832.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Ho PA, Alonzo TA, Gerbing RB, Pollard J, Stirewalt DL, Hurwitz C, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2009;113(26):6558–66.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Fasan A, Alpermann T, Haferlach C, Grossmann V, Roller A, Kohlmann A, et al. Frequency and prognostic impact of CEBPA proximal, distal and core promoter methylation in normal karyotype AML: a study on 623 cases. PLoS One. 2013;8(2):e54365.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Fuchs O. Growth-inhibiting activity of transcription factor C/EBPalpha, its role in haematopoiesis and its tumour suppressor or oncogenic properties in leukaemias. Folia Biol. 2006;53(3):97–108.Google Scholar
  136. 136.
    Agrawal S, Hofmann W-K, Tidow N, Ehrich M, van den Boom D, Koschmieder S, et al. The C/EBPδ tumor suppressor is silenced by hypermethylation in acute myeloid leukemia. Blood. 2007;109(9):3895–905.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Maria Kavianpour
    • 1
  • Ahmad Ahmadzadeh
    • 1
  • Saeid Shahrabi
    • 2
  • Najmaldin Saki
    • 1
  1. 1.Health research institute, Thalassemia & Hemoglobinopathy Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Biochemistry and Hematology, Faculty of MedicineSemnan University of Medical SciencesSemnanIran

Personalised recommendations