Tumor Biology

, Volume 37, Issue 9, pp 11983–11990 | Cite as

Analysis of APOBEC3A/3B germline deletion polymorphism in breast, cervical and oral cancers from South India and its impact on miRNA regulation

  • Sundaramoorthy Revathidevi
  • Mayakannan Manikandan
  • Arunagiri Kuha Deva Magendhra Rao
  • Vilvanathan Vinothkumar
  • Ganesan Arunkumar
  • Kottayasamy Seenivasagam Rajkumar
  • Rajendran Ramani
  • Ramamurthy Rajaraman
  • Chandrasekar Ajay
  • Arasambattu Kannan Munirajan
Original Article


Breast cancer and cervical cancer are the leading causes of death in women worldwide as well as in India, whilst oral cancer is the top most common cancer among Asian especially in Indian men in terms of both incidence and mortality rate. Genetic factors determining the predisposition to cancer are being explored to identify the signature genetic variations associated with these cancers. Recently, a germline deletion polymorphism in APOBEC3 gene cluster which completely deletes APOBEC3B coding region has been studied for its association with cancer risk. We screened the germline deletion polymorphism in 409 cancer patients (224 breast cancer, 88 cervical cancer and 97 oral cancer samples), 478 controls and 239 cervical cancer tissue DNAs of South Indian origin. The results suggest that the APOBEC3A/3B deletion polymorphism is not significantly associated with cancer risk in our study population (OR 0.739, 95 % CI, p value 0.91457). Considering the viral restriction property of APOBEC3s, we also screened cervical cancer tissue DNAs for the human papilloma virus infection. We observed a gradual increase in the frequency of HPV16 infection from AA/BB cases (66.86 %) to AA/-- cases (71.43) which signifies the impact of this deletion polymorphism in HPV infection. In addition, we performed in silico analysis to understand the effect of this polymorphism on miRNA regulation of the APOBEC3A/3B fusion transcript. Only 8 APOBEC3B targeting miRNAs were observed to regulate the fusion transcript of which miR-34b-3p and miR-138-5p were found to be frequently downregulated in cancers suggesting miRNA-mediated deregulation of APOBEC3A expression in cancer patients harbouring this particular deletion polymorphism.


APOBEC3A APOBEC3B Deletion polymorphism Cancer risk Human Papilloma virus microRNA 



This work was supported by a research grant from Department of Atomic Energy, Board of Research in Nuclear Sciences, Mumbai (grant no. 35/14/10/2014-BRNS/0210) and partly by Department of Biotechnology, New Delhi (grant no. BT/PR4820/MED/12/622/2013) sanctioned to AKM. We gratefully acknowledge the infrastructural facilities of our Department supported through SAP and FIST grants from University Grants Commission and Department of Science and Technology, New Delhi, respectively and the Multidisciplinary Research Unit of our institute for the Real Time PCR facility. We also thank Mr. Vishnuprabu Durairajapandian, Mr. M. Nagarajan and Ms. V. Vaishnavi for their comments, advice and technical support. SR and GA are supported by research fellowships from University Grants Commission, New Delhi, AKDMR, VV and MM were supported by research fellowships from Council of Scientific and Industrial Research, New Delhi.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Navaratnam N, Sarwar R. An overview of cytidine deaminases. Int J Hematol. 2006;83:195–200.CrossRefPubMedGoogle Scholar
  2. 2.
    Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46:487–91.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Caval V, Suspene R, Shapira M, Vartanian JP, Wain-Hobson S. A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage. Nat Commun. 2014;5:5129.CrossRefPubMedGoogle Scholar
  4. 4.
    Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 2007;3:e63.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vartanian JP, Guetard D, Henry M, Wain-Hobson S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science. 2008;320:230–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–83.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Vejnar CE, Blum M, Zdobnov EM. miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res. 2013;41(Web Server issue):W165–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9:229.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ezzikouri S, Kitab B, Rebbani K, Marchio A, Wain-Hobson S, et al. Polymorphic APOBEC3 modulates chronic hepatitis B in Moroccan population. J Viral Hepat. 2013;20:678–86.CrossRefPubMedGoogle Scholar
  11. 11.
    Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol. 2005;22:367–77.CrossRefPubMedGoogle Scholar
  12. 12.
    Henry M, Terzian C, Peeters M, Wain-Hobson S, Vartanian JP. Evolution of the primate APOBEC3A cytidine deaminase gene and identification of related coding regions. PLoS One. 2012;7:e30036.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xuan D, Li G, Cai Q, Deming-Halverson S, Shrubsole MJ, et al. APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. Carcinogenesis. 2013;34:2240–3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Qi G, Xiong H, Zhou C. APOBEC3 deletion polymorphism is associated with epithelial ovarian cancer risk among Chinese women. Tumour Biol. 2014;35:5723–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Browne EP, Allers C, Landau NR. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology. 2009;387:313–21.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Schumacher AJ, Hache G, Macduff DA, Brown WL, Harris RS. The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol. 2008;82:2652–60.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 2014;7:1833–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Vieira VC, Leonard B, White EA, Starrett GJ, Temiz NA, et al. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. MBio. 2014;5(6):e02234–14.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang T, Cai J, Chang J, Yu D, Wu C, et al. Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. Hum Mol Genet. 2013;22:1262–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Hiroki E, Suzuki F, Akahira J, Nagase S, Ito K, et al. MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int J Cancer. 2012;131:E395–404.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu X, Jiang L, Wang A, Yu J, Shi F, et al. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009;286:217–22.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang LG, Ni Y, Su BH, Mu XR, Shen HC, et al. MicroRNA-34b functions as a tumor suppressor and acts as a nodal point in the feedback loop with Met. Int J Oncol. 2013;42:957–62.PubMedGoogle Scholar
  23. 23.
    Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015;47(9):1067–72.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–70.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sasaki H, Suzuki A, Tatematsu T, Shitara M, Hikosaka Y, et al. APOBEC3B gene overexpression in non-small-cell lung cancer. Biomed Rep. 2014;2:392–5.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Sundaramoorthy Revathidevi
    • 1
  • Mayakannan Manikandan
    • 1
  • Arunagiri Kuha Deva Magendhra Rao
    • 1
  • Vilvanathan Vinothkumar
    • 1
  • Ganesan Arunkumar
    • 1
  • Kottayasamy Seenivasagam Rajkumar
    • 2
  • Rajendran Ramani
    • 3
  • Ramamurthy Rajaraman
    • 2
  • Chandrasekar Ajay
    • 2
  • Arasambattu Kannan Munirajan
    • 1
  1. 1.Department of Genetics, Dr. ALM PG Institute of Basic Medical SciencesUniversity of MadrasChennaiIndia
  2. 2.Centre for OncologyGovernment Royapettah Hospital & Kilpauk Medical CollegeChennaiIndia
  3. 3.Institute of Social Obstetrics and Government Kasturba Gandhi Hospital for Women and ChildrenChennaiIndia

Personalised recommendations