Skip to main content

Advertisement

Log in

Analysis of APOBEC3A/3B germline deletion polymorphism in breast, cervical and oral cancers from South India and its impact on miRNA regulation

  • Original Article
  • Published:
Tumor Biology

Abstract

Breast cancer and cervical cancer are the leading causes of death in women worldwide as well as in India, whilst oral cancer is the top most common cancer among Asian especially in Indian men in terms of both incidence and mortality rate. Genetic factors determining the predisposition to cancer are being explored to identify the signature genetic variations associated with these cancers. Recently, a germline deletion polymorphism in APOBEC3 gene cluster which completely deletes APOBEC3B coding region has been studied for its association with cancer risk. We screened the germline deletion polymorphism in 409 cancer patients (224 breast cancer, 88 cervical cancer and 97 oral cancer samples), 478 controls and 239 cervical cancer tissue DNAs of South Indian origin. The results suggest that the APOBEC3A/3B deletion polymorphism is not significantly associated with cancer risk in our study population (OR 0.739, 95 % CI, p value 0.91457). Considering the viral restriction property of APOBEC3s, we also screened cervical cancer tissue DNAs for the human papilloma virus infection. We observed a gradual increase in the frequency of HPV16 infection from AA/BB cases (66.86 %) to AA/-- cases (71.43) which signifies the impact of this deletion polymorphism in HPV infection. In addition, we performed in silico analysis to understand the effect of this polymorphism on miRNA regulation of the APOBEC3A/3B fusion transcript. Only 8 APOBEC3B targeting miRNAs were observed to regulate the fusion transcript of which miR-34b-3p and miR-138-5p were found to be frequently downregulated in cancers suggesting miRNA-mediated deregulation of APOBEC3A expression in cancer patients harbouring this particular deletion polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Navaratnam N, Sarwar R. An overview of cytidine deaminases. Int J Hematol. 2006;83:195–200.

    Article  CAS  PubMed  Google Scholar 

  2. Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, et al. Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer. Nat Genet. 2014;46:487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caval V, Suspene R, Shapira M, Vartanian JP, Wain-Hobson S. A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3′UTR enhances chromosomal DNA damage. Nat Commun. 2014;5:5129.

    Article  CAS  PubMed  Google Scholar 

  4. Kidd JM, Newman TL, Tuzun E, Kaul R, Eichler EE. Population stratification of a common APOBEC gene deletion polymorphism. PLoS Genet. 2007;3:e63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vartanian JP, Guetard D, Henry M, Wain-Hobson S. Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science. 2008;320:230–3.

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    Article  PubMed Central  Google Scholar 

  7. Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vejnar CE, Blum M, Zdobnov EM. miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res. 2013;41(Web Server issue):W165–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9:229.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ezzikouri S, Kitab B, Rebbani K, Marchio A, Wain-Hobson S, et al. Polymorphic APOBEC3 modulates chronic hepatitis B in Moroccan population. J Viral Hepat. 2013;20:678–86.

    Article  CAS  PubMed  Google Scholar 

  11. Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol. 2005;22:367–77.

    Article  CAS  PubMed  Google Scholar 

  12. Henry M, Terzian C, Peeters M, Wain-Hobson S, Vartanian JP. Evolution of the primate APOBEC3A cytidine deaminase gene and identification of related coding regions. PLoS One. 2012;7:e30036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xuan D, Li G, Cai Q, Deming-Halverson S, Shrubsole MJ, et al. APOBEC3 deletion polymorphism is associated with breast cancer risk among women of European ancestry. Carcinogenesis. 2013;34:2240–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qi G, Xiong H, Zhou C. APOBEC3 deletion polymorphism is associated with epithelial ovarian cancer risk among Chinese women. Tumour Biol. 2014;35:5723–6.

    Article  CAS  PubMed  Google Scholar 

  15. Browne EP, Allers C, Landau NR. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology. 2009;387:313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schumacher AJ, Hache G, Macduff DA, Brown WL, Harris RS. The DNA deaminase activity of human APOBEC3G is required for Ty1, MusD, and human immunodeficiency virus type 1 restriction. J Virol. 2008;82:2652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henderson S, Chakravarthy A, Su X, Boshoff C, Fenton TR. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep. 2014;7:1833–41.

    Article  CAS  PubMed  Google Scholar 

  18. Vieira VC, Leonard B, White EA, Starrett GJ, Temiz NA, et al. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. MBio. 2014;5(6):e02234–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang T, Cai J, Chang J, Yu D, Wu C, et al. Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. Hum Mol Genet. 2013;22:1262–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hiroki E, Suzuki F, Akahira J, Nagase S, Ito K, et al. MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int J Cancer. 2012;131:E395–404.

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Jiang L, Wang A, Yu J, Shi F, et al. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009;286:217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang LG, Ni Y, Su BH, Mu XR, Shen HC, et al. MicroRNA-34b functions as a tumor suppressor and acts as a nodal point in the feedback loop with Met. Int J Oncol. 2013;42:957–62.

    CAS  PubMed  Google Scholar 

  23. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, et al. An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet. 2015;47(9):1067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sasaki H, Suzuki A, Tatematsu T, Shitara M, Hikosaka Y, et al. APOBEC3B gene overexpression in non-small-cell lung cancer. Biomed Rep. 2014;2:392–5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from Department of Atomic Energy, Board of Research in Nuclear Sciences, Mumbai (grant no. 35/14/10/2014-BRNS/0210) and partly by Department of Biotechnology, New Delhi (grant no. BT/PR4820/MED/12/622/2013) sanctioned to AKM. We gratefully acknowledge the infrastructural facilities of our Department supported through SAP and FIST grants from University Grants Commission and Department of Science and Technology, New Delhi, respectively and the Multidisciplinary Research Unit of our institute for the Real Time PCR facility. We also thank Mr. Vishnuprabu Durairajapandian, Mr. M. Nagarajan and Ms. V. Vaishnavi for their comments, advice and technical support. SR and GA are supported by research fellowships from University Grants Commission, New Delhi, AKDMR, VV and MM were supported by research fellowships from Council of Scientific and Industrial Research, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arasambattu Kannan Munirajan.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathidevi, S., Manikandan, M., Rao, A.K.D.M. et al. Analysis of APOBEC3A/3B germline deletion polymorphism in breast, cervical and oral cancers from South India and its impact on miRNA regulation. Tumor Biol. 37, 11983–11990 (2016). https://doi.org/10.1007/s13277-016-5064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5064-4

Keywords

Navigation