Skip to main content

Advertisement

Log in

Dietary restriction: could it be considered as speed bump on tumor progression road?

  • Review
  • Published:
Tumor Biology

Abstract

Dietary restrictions, including fasting (or long-term starvation), calorie restriction (CR), and short-term starvation (STS), are considered a strong rationale that may protect against various diseases, including age-related diseases and cancer. Among dietary approaches, STS, in which food is not consumed during designed fasting periods but is typically not restricted during designated feeding periods, seems to be more suitable, because other dietary regimens involving prolonged fasting periods could worsen the health conditions of cancer patients, being they already naturally prone to weight loss. Until now, the limited amount of available data does not point to a single gene, pathway, or molecular mechanism underlying the benefits to the different dietary approaches. It is well known that the healthy effect is mediated in part by the reduction of nutrient-related pathways. The calorie restriction and starvation (long- and short-term) also suppress the inflammatory response reducing the expression, for example, of IL-10 and TNF-α, mitigating pro-inflammatory gene expression and increasing anti-inflammatory gene expression. The dietary restriction may regulate both genes involved in cellular proliferation and factors associated to apoptosis in normal and cancer cells. Finally, dietary restriction is an important tool that may influence the response to chemotherapy in preclinical models. However, further data are needed to correlate dietary approaches with chemotherapeutic treatments in human models. The aim of this review is to discuss the effects of various dietary approaches on the cancer progression and therapy response, mainly in preclinical models, describing some signaling pathways involved in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Codeluppi S, Gregory EN, Kjell J, Wigerblad G, Olson L, Svensson CI. Influence of rat substrain and growth conditions on the characteristics of primary cultures of adult rat spinal cord astrocytes. J Neurosci Methods. 2011;197(1):118–27.

    Article  PubMed  Google Scholar 

  2. Pontarin G, Ferraro P, Rampazzo C, Kollberg G, Holme E, Reichard P, et al. Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase. J Biol Chem. 2011;286(13):11132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pirkmajer S, Chibalin AV. Serum starvation: caveat emptor. Am J Physiol Cell Physiol. 2011;301(2):C272–9.

    Article  CAS  PubMed  Google Scholar 

  4. Arrington DD, Schnellmann RG. Targeting of the molecular chaperone oxygen-regulated protein 150 (ORP150) to mitochondria and its induction by cellular stress. Am J Physiol Cell Physiol. 2008;294(2):C641–50.

    Article  CAS  PubMed  Google Scholar 

  5. Bhutia SK, Kegelman TP, Das SK, Azab B, Su ZZ, Lee SG, et al. Astrocyte elevated gene-1 induces protective autophagy. Proc Natl Acad Sci U S A. 2010;107(51):22243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terra LF, Garay-Malpartida MH, Wailemann RA, Sogayar MC, Labriola L. Recombinant human prolactin promotes human beta cell survival via inhibition of extrinsic and intrinsic apoptosis pathways. Diabetologia. 2011;54(6):1388–97.

    Article  CAS  PubMed  Google Scholar 

  7. Liu HS, Hsu PY, Lai MD, Chang HY, Ho CL, Cheng HL, et al. An unusual function of RON receptor tyrosine kinase as a transcriptional regulator in cooperation with EGFR in human cancer cells. Carcinogenesis. 2010;31(8):1456–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bousette N, Chugh S, Fong V, Isserlin R, Kim KH, Volchuk A, et al. Constitutively active calcineurin induces cardiac endoplasmic reticulum stress and protects against apoptosis that is mediated by alpha-crystallin-B. Proc Natl Acad Sci U S A. 2010;107(43):18481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Omodei D, Fontana L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett. 2011;585(11):1537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brandhorst S, Wei M, Hwang S, Morgan TE, Longo VD. Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Exp Gerontol. 2013;48(10):1120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anton S, Leeuwenburgh C. Fasting or caloric restriction for healthy aging. Exp Gerontol. 2013;48(10):1003–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986;116(4):641–54.

    CAS  PubMed  Google Scholar 

  13. Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009;203(1):206–13.

    Article  CAS  PubMed  Google Scholar 

  14. Larson-Meyer DE, Heilbronn LK, Redman LM, Newcomer BR, Frisard MI, Anton S, et al. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care. 2006;29(6):1337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3), e76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aris JP, Alvers AL, Ferraiuolo RA, Fishwick LK, Hanvivatpong A, Hu D, et al. Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp Gerontol. 2013;48(10):1107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res. 2012;110(8):1125–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofer T, Fontana L, Anton SD, Weiss EP, Villareal D, Malayappan B, et al. Long-term effects of caloric restriction or exercise on DNA and RNA oxidation levels in white blood cells and urine in humans. Rejuvenation Res. 2008;11(4):793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4(124):124ra127.

    Article  Google Scholar 

  20. Robertson LT, Mitchell JR. Benefits of short-term dietary restriction in mammals. Exp Gerontol. 2013;48(10):1043–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee C, Longo VD. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene. 2011;30(30):3305–16.

    Article  CAS  PubMed  Google Scholar 

  22. Lee GY, Lee JJ, Lee SM. Antioxidant and anticoagulant status were improved by personalized dietary intervention based on biochemical and clinical parameters in cancer patients. Nutr Cancer. 2015;67(7):1083–92.

    Article  CAS  PubMed  Google Scholar 

  23. Davis LM, Pauly JR, Readnower RD, Rho JM, Sullivan PG. Fasting is neuroprotective following traumatic brain injury. J Neurosci Res. 2008;86(8):1812–22.

    Article  CAS  PubMed  Google Scholar 

  24. Fontana L, Partridge L, Longo VD. Extending healthy life span—from yeast to humans. Science. 2010;328(5976):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature. 2003;421(6919):182–7.

    Article  CAS  PubMed  Google Scholar 

  26. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim DH, Kim JY, Yu BP, Chung HY. The activation of NF-kappaB through Akt-induced FOXO1 phosphorylation during aging and its modulation by calorie restriction. Biogerontology. 2008;9(1):33–47.

    Article  CAS  PubMed  Google Scholar 

  28. Partridge L, Bruning JC. Forkhead transcription factors and ageing. Oncogene. 2008;27(16):2351–63.

    Article  CAS  PubMed  Google Scholar 

  29. Ramsey MM, Ingram RL, Cashion AB, Ng AH, Cline JM, Parlow AF, et al. Growth hormone-deficient dwarf animals are resistant to dimethylbenzanthracine (DMBA)-induced mammary carcinogenesis. Endocrinology. 2002;143(10):4139–42.

    Article  CAS  PubMed  Google Scholar 

  30. Prisco M, Romano G, Peruzzi F, Valentinis B, Baserga R. Insulin and IGF-I receptors signaling in protection from apoptosis. Horm Metab Res. 1999;31(2-3):80–9.

    Article  CAS  PubMed  Google Scholar 

  31. Salmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA. Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am J Physiol Endocrinol Metab. 2005;289(1):E23–9.

    Article  CAS  PubMed  Google Scholar 

  32. Brown-Borg HM, Rakoczy SG. Catalase expression in delayed and premature aging mouse models. Exp Gerontol. 2000;35(2):199–212.

    Article  CAS  PubMed  Google Scholar 

  33. van den Bosch HM, Bunger M, de Groot PJ, van der Meijde J, Hooiveld GJ, Muller M. Gene expression of transporters and phase I/II metabolic enzymes in murine small intestine during fasting. BMC Genomics. 2007;8:267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiba T, Ezaki O. Dietary restriction suppresses inflammation and delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun. 2010;399(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  35. Lee C, Raffaghello L, Longo VD. Starvation, detoxification, and multidrug resistance in cancer therapy. Drug Resist Updat. 2012;15(1-2):114–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Longo VD, Lieber MR, Vijg J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol. 2008;9(11):903–10.

    Article  CAS  PubMed  Google Scholar 

  37. Shi Y, Felley-Bosco E, Marti TM, Orlowski K, Pruschy M, Stahel RA. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer. 2012;12:571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dong S, Khoo A, Wei J, Bowser RK, Weathington NM, Xiao S, et al. Serum starvation regulates E-cadherin upregulation via activation of c-Src in non-small-cell lung cancer A549 cells. Am J Physiol Cell Physiol. 2014;307(9):C893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong AS, Gumbiner BM. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol. 2003;161(6):1191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Braun F, Bertin-Ciftci J, Gallouet AS, Millour J, Juin P. Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-x(L) inhibition. PLoS One. 2011;6(8), e23577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu C, Shi Y, Wang Z, Song Z, Zhu M, Cai Q, et al. Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. FEBS Lett. 2008;582(18):2703–8.

    Article  CAS  PubMed  Google Scholar 

  42. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI, et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 2012;22(7):1181–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Formentini L, Macchiarulo A, Cipriani G, Camaioni E, Rapizzi E, Pellicciari R, et al. Poly(ADP-ribose) catabolism triggers AMP-dependent mitochondrial energy failure. J Biol Chem. 2009;284(26):17668–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siggens L, Figg N, Bennett M, Foo R. Nutrient deprivation regulates DNA damage repair in cardiomyocytes via loss of the base-excision repair enzyme OGG1. FASEB J. 2012;26(5):2117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319(5868):1352–5.

    Article  CAS  PubMed  Google Scholar 

  47. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.

    CAS  PubMed  Google Scholar 

  48. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  49. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  50. Medema RH, Bos JL. The role of p21ras in receptor tyrosine kinase signaling. Crit Rev Oncog. 1993;4(6):615–61.

    CAS  PubMed  Google Scholar 

  51. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  52. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15(1):80–101.

    CAS  PubMed  Google Scholar 

  53. Flemstrom G, Bengtsson MW, Makela K, Herzig KH. Effects of short-term food deprivation on orexin-A-induced intestinal bicarbonate secretion in comparison with related secretagogues. Acta Physiol (Oxford). 2010;198(3):373–80.

    Article  CAS  Google Scholar 

  54. Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A. 2008;105(24):8215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Russo A, Rizzo S. Could starvation minimize chemotherapy-induced toxicities? Expert Opin Ther Targets. 2008;12(9):1205–7.

    Article  CAS  PubMed  Google Scholar 

  56. Dirks-Naylor AJ, Kouzi SA, Yang S, Tran NT, Bero JD, Mabolo R, et al. Can short-term fasting protect against doxorubicin-induced cardiotoxicity? World J Biol Chem. 2014;5(3):269–74.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Laconi E, Tessitore L, Milia G, Yusuf A, Sarma DS, Todde P, et al. The enhancing effect of fasting/refeeding on the growth of nodules selectable by the resistant hepatocyte model in rat liver. Carcinogenesis. 1995;16(8):1865–9.

    Article  CAS  PubMed  Google Scholar 

  58. Premoselli F, Sesca E, Binasco V, Caderni G, Tessitore L. Fasting/re-feeding before initiation enhances the growth of aberrant crypt foci induced by azoxymethane in rat colon and rectum. Int J Cancer. 1998;77(2):286–94.

    Article  CAS  PubMed  Google Scholar 

  59. Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.

    Article  CAS  PubMed  Google Scholar 

  60. Toren P, Mora BC, Venkateswaran V. Diet, obesity, and cancer progression: are adipocytes the link? Lipid Insights. 2013;6:37–45.

    PubMed  PubMed Central  Google Scholar 

  61. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65.

    Article  CAS  PubMed  Google Scholar 

  62. Berstein LM, Kovalevskij AY, Poroshina TE, Kotov AV, Kovalenko IG, Tsyrlina EV, et al. Signs of proinflammatory/genotoxic switch (adipogenotoxicosis) in mammary fat of breast cancer patients: role of menopausal status, estrogens and hyperglycemia. Int J Cancer. 2007;121(3):514–9.

    Article  CAS  PubMed  Google Scholar 

  63. Wang YY, Lehuede C, Laurent V, Dirat B, Dauvillier S, Bochet L, et al. Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer. Cancer Lett. 2012;324(2):142–51.

    Article  CAS  PubMed  Google Scholar 

  64. Sacca PA, Creydt VP, Choi H, Mazza ON, Fletcher SJ, Vallone VB, et al. Human periprostatic adipose tissue: its influence on prostate cancer cells. Cell Physiol Biochem. 2012;30(1):113–22.

    Article  CAS  PubMed  Google Scholar 

  65. Ribeiro R, Monteiro C, Catalan V, Hu P, Cunha V, Rodriguez A, et al. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue. BMC Med. 2012;10:108.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hermsdorff HH, Zulet MA, Abete I, Martinez JA. Discriminated benefits of a Mediterranean dietary pattern within a hypocaloric diet program on plasma RBP4 concentrations and other inflammatory markers in obese subjects. Endocrine. 2009;36(3):445–51.

    Article  CAS  PubMed  Google Scholar 

  68. Champ CE, Baserga R, Mishra MV, Jin L, Sotgia F, Lisanti MP, et al. Nutrient restriction and radiation therapy for cancer treatment: when less is more. Oncologist. 2013;18(1):97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356(2 Pt A):289–300.

    Article  CAS  PubMed  Google Scholar 

  70. Fanale D, Bazan V, Corsini LR, Caruso S, Insalaco L, Castiglia M, et al. HIF-1 is involved in the negative regulation of AURKA expression in breast cancer cell lines under hypoxic conditions. Breast Cancer Res Treat. 2013;140(3):505–17.

    Article  CAS  PubMed  Google Scholar 

  71. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al. Fasting and cancer treatment in humans: a case series report. Aging (Albany NY). 2009;1(12):988–1007.

    Article  Google Scholar 

  72. Fanale D, Bazan V, Caruso S, Castiglia M, Bronte G, Rolfo C, et al. Hypoxia and human genome stability: downregulation of BRCA2 expression in breast cancer cell lines. Biomed Res Int. 2013;2013:746858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shim HS, Wei M, Brandhorst S, Longo VD. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res. 2015;75(6):1056–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  75. Shin JS, Hong SW, Lee SL, Kim TH, Park IC, An SK, et al. Serum starvation induces G1 arrest through suppression of Skp2-CDK2 and CDK4 in SK-OV-3 cells. Int J Oncol. 2008;32(2):435–9.

    CAS  PubMed  Google Scholar 

  76. Kannen V, Zanette DL, Fernandes CR, Ferreira FR, Marini T, Carvalho MC, et al. High-fat diet causes an imbalance in the colonic serotonergic system promoting adipose tissue enlargement and dysplasia in rats. Toxicol Lett. 2012;213(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  77. Garcia SB, Barros LT, Turatti A, Martinello F, Modiano P, Ribeiro-Silva A, et al. The anti-obesity agent Orlistat is associated to increase in colonic preneoplastic markers in rats treated with a chemical carcinogen. Cancer Lett. 2006;240(2):221–4.

    Article  CAS  PubMed  Google Scholar 

  78. Simsek T, Canturk NZ, Canturk Z, Yirmibesoglu OA, Bayhan Z, Oz S. Evaluation of relationship between serum lipids levels with colorectal carcinoma: a single center prospective case control study. Hepatogastroenterology. 2014;61(129):59–64.

    CAS  PubMed  Google Scholar 

  79. Kaska M, Grosmanova T, Havel E, Hyspler R, Petrova Z, Brtko M, et al. The impact and safety of preoperative oral or intravenous carbohydrate administration versus fasting in colorectal surgery—a randomized controlled trial. Wien Klin Wochenschr. 2010;122(1-2):23–30.

    Article  CAS  PubMed  Google Scholar 

  80. Yang CS, Newmark HL. The role of micronutrient deficiency in carcinogenesis. Crit Rev Oncol Hematol. 1987;7(4):267–87.

    Article  CAS  PubMed  Google Scholar 

  81. Kannen V, Fernandes CR, Stopper H, Zanette DL, Ferreira FR, Frajacomo FT, et al. Colon preneoplasia after carcinogen exposure is enhanced and colonic serotonergic system is suppressed by food deprivation. Toxicology. 2013;312:123–31.

    Article  CAS  PubMed  Google Scholar 

  82. Rolfo C, Fanale D, Hong DS, Tsimberidou AM, Piha-Paul SA, Pauwels P, et al. Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr Pharm Biotechnol. 2014;15(5):475–85.

    Article  CAS  PubMed  Google Scholar 

  83. Katsuya Y, Fujiwara Y, Sunami K, Utsumi H, Goto Y, Kanda S, et al. Comparison of the pharmacokinetics of erlotinib administered in complete fasting and 2 h after a meal in patients with lung cancer. Cancer Chemother Pharmacol. 2015;76(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  84. Aronson WJ, Barnard RJ, Freedland SJ, Henning S, Elashoff D, Jardack PM, et al. Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J Urol. 2010;183(1):345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li X, Lao Y, Zhang H, Wang X, Tan H, Lin Z, et al. The natural compound Guttiferone F sensitizes prostate cancer to starvation induced apoptosis via calcium and JNK elevation. BMC Cancer. 2015;15:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bonorden MJ, Rogozina OP, Kluczny CM, Grossmann ME, Grande JP, Lokshin A, et al. Cross-sectional analysis of intermittent versus chronic caloric restriction in the TRAMP mouse. Prostate. 2009;69(3):317–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Russo.

Ethics declarations

Conflicts of interest

None

Additional information

Antonina Cangemi, Daniele Fanale and Gaetana Rinaldi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cangemi, A., Fanale, D., Rinaldi, G. et al. Dietary restriction: could it be considered as speed bump on tumor progression road?. Tumor Biol. 37, 7109–7118 (2016). https://doi.org/10.1007/s13277-016-5044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5044-8

Keywords

Navigation