Tumor Biology

, Volume 37, Issue 8, pp 11485–11493 | Cite as

MicroRNA-134 modulates glioma cell U251 proliferation and invasion by targeting KRAS and suppressing the ERK pathway

  • Yuguang Zhao
  • Dong Pang
  • Cui Wang
  • Shijiang Zhong
  • Shuang Wang
Original Article


Dysregulated microRNA-134 (miR-134) has been observed in glioma carcinogenesis, and studies suggested that the ERK pathway plays vital roles in glioma cell growth and proliferation. However, the fundamental relationship between miR-134 and the ERK pathway in glioma has not been fully explained. As a result, this study was aimed to explore the underlying functions of miR-134 in human glioma. Intentionally overexpressed or inhibited miR-134 expression resulted from the transfection of miR-134 mimics, or miR-134 inhibitor within glioma cell line U251 was detected using RT-PCR. Both cell counting kit-8 (CCK-8) assays and Transwell assays were carried out to clarify the proliferation and invasion of U251 cells transfected with miR-134 mimics or miR-134 inhibitors. Our findings showed that miR-134 was significantly downexpressed in glioma tissues, and low miR-134 expression was significantly related to high histopathological grades. However, upregulated miR-134 expression restrained the proliferation and invasion of U251 cells in vitro. Kirsten rat sarcoma viral oncogene (KRAS), a vital factor for the ERK pathway, was directly targeted by miR-134 through its binding with the 3′-UTR of KRAS in glioma. Furthermore, KRAS expression exhibited a positive correlation with the activity of the ERK pathway. Overexpression of KRAS without 3′-UTR partly offsets the suppressive effect of miR-134 on glioma progression. Our data also indicated that miR-134 negatively modulated glioma progression and upregulated miR-134 triggered aberrant activation of the ERK pathway by targeting KRAS. Therefore, miR-134 might be considered as a benign therapeutic target of glioma.


MicroRNA-134 Glioma Proliferation Invasion KRAS ERK pathway 



This study was supported by Scientific Research Item of Health Department in Heilongjiang Province (No. 2011–076) and Youth Science Funds of Heilongjiang Province (No. QC2011C130).

Compliance of ethical standards

The ethics committee of the Second Affiliated Hospital of Harbin Medical University thoroughly reviewed the protocol of this study, and eventually, study approval was obtained. All participants signed the consent prior to the commencement of molecular experiments.

Conflicts of interest



  1. 1.
    Ohgaki H, Kleihues P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 2009;100:2235–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2006–2010. Neuro-Oncology. 2013;15 Suppl 2:ii1–56.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Zhang C, Bao Z, Zhang W, Jiang T. Progress on molecular biomarkers and classification of malignant gliomas. Frontiers of medicine. 2013;7:150–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Li A, Walling J, Ahn S, Kotliarov Y, Su Q, Quezado M, et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 2009;69:2091–9.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Low SY, Ho YK, Too HP, Yap CT, Ng WH. MicroRNA as potential modulators in chemoresistant high-grade gliomas. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2014;21:395–400.CrossRefGoogle Scholar
  6. 6.
    Malerba S, Galeone C, Pelucchi C, Turati F, Hashibe M, La Vecchia C, et al. A meta-analysis of coffee and tea consumption and the risk of glioma in adults. Cancer causes & control : CCC. 2013;24:267–76.CrossRefPubMedGoogle Scholar
  7. 7.
    Michaud DS, Gallo V, Schlehofer B, Tjonneland A, Olsen A, Overvad K, et al. Reproductive factors and exogenous hormone use in relation to risk of glioma and meningioma in a large European cohort study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2010;19:2562–9.CrossRefGoogle Scholar
  8. 8.
    Ohgaki H. Epidemiology of brain tumors. Methods Mol Biol. 2009;472:323–42.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang Y, Jiang T. Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett. 2013;331:139–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Zalatimo O, Zoccoli CM, Patel A, Weston CL, Glantz M. Impact of genetic targets on primary brain tumor therapy: what’s ready for prime time? Adv Exp Med Biol. 2013;779:267–89.CrossRefPubMedGoogle Scholar
  11. 11.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev. 2015;81:128–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Hassan T, Smith SG, Gaughan K, Oglesby IK, O’Neill S, McElvaney NG, et al. Isolation and identification of cell-specific microRNAs targeting a messenger RNA using a biotinylated anti-sense oligonucleotide capture affinity technique. Nucleic Acids Res. 2013;41:e71.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Hummel R, Maurer J, Haier J. MicroRNAs in brain tumors: a new diagnostic and therapeutic perspective? Mol Neurobiol. 2011;44:223–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Turner JD, Williamson R, Almefty KK, Nakaji P, Porter R, Tse V, et al. The many roles of microRNAs in brain tumor biology. Neurosurg Focus. 2010;28:E3.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang K, Wang X, Zou J, Zhang A, Wan Y, Pu P, et al. mir-92b controls glioma proliferation and invasion through regulating Wnt/beta-catenin signaling via Nemo-like kinase. Neuro-Oncology. 2013;15:578–88.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Simon M, Hosking FJ, Marie Y, Gousias K, Boisselier B, Carpentier C, et al. Genetic risk profiles identify different molecular etiologies for glioma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16:5252–9.CrossRefGoogle Scholar
  19. 19.
    Li X, Ling N, Bai Y, Dong W, Hui GZ, Liu D, et al. Mir-16-1 plays a role in reducing migration and invasion of glioma cells. Anat Rec. 2013;296:427–32.CrossRefGoogle Scholar
  20. 20.
    Tang H, Liu X, Wang Z, She X, Zeng X, Deng M, et al. Interaction of hsa-mir-381 and glioma suppressor LRRC4 is involved in glioma growth. Brain Res. 2011;1390:21–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P. Stage-specific modulation of cortical neuronal development by Mmu-mir-134. Cereb Cortex. 2011;21:1857–69.CrossRefPubMedGoogle Scholar
  22. 22.
    Christensen M, Larsen LA, Kauppinen S, Schratt G. Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for mir-134 in dendritogenesis in vivo. Frontiers in neural circuits. 2010;3:16.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Li J, Wang Y, Luo J, Fu Z, Ying J, Yu Y, et al. Mir-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett. 2012;586:3761–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells. 2008;26:17–29.CrossRefPubMedGoogle Scholar
  25. 25.
    Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupre I, et al. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One. 2011;6:e20600.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Niu CS, Yang Y, Cheng CD. Mir-134 regulates the proliferation and invasion of glioblastoma cells by reducing Nanog expression. Int J Oncol. 2013;42:1533–40.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A. 2012;109:3041–6.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27:2383–92.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nature reviews Clinical oncology. 2009;6:519–27.CrossRefPubMedGoogle Scholar
  30. 30.
    Liang QC, Xiong H, Zhao ZW, Jia D, Li WX, Qin HZ, et al. Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells. Cancer Lett. 2009;273:164–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Y, Zhang M, Qian J, Bao M, Meng X, Zhang S, et al. Mir-134 functions as a tumor suppressor in cell proliferation and epithelial-to-mesenchymal transition by targeting KRAS in renal cell carcinoma cells. DNA Cell Biol. 2015;34:429–36.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Kim M, Slack FJ. MicroRNA-mediated regulation of KRAS in cancer. Journal of hematology & oncology. 2014;7:84.CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Kim J, Mueller AC, Dey B, Yang Y, Lee DH, et al. Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5b, and glioblastoma. Cell Death Differ. 2014;21:720–34.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, Solit DB, et al. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res. 2010;70:6804–14.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Miller KA, Yeager N, Baker K, Liao XH, Refetoff S, Di Cristofano A. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 2009;69:3689–94.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Dontula R, Dinasarapu A, Chetty C, Pannuru P, Herbert E, Ozer H, et al. MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 signaling. Genes & cancer. 2013;4:285–96.CrossRefGoogle Scholar
  37. 37.
    Han S, Li Z, Master LM, Master ZW, Wu A. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br J Cancer. 2014;111:1400–9.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Komori T. Pathology and genetics of diffuse gliomas in adults. Neurol Med Chir. 2015;55 Suppl 1:28–37.CrossRefGoogle Scholar
  39. 39.
    Hsu SM, Soban E. Color modification of diaminobenzidine (dab) precipitation by metallic ions and its application for double immunohistochemistry. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 1982;30:1079–82.CrossRefGoogle Scholar
  40. 40.
    Neviani P, Fabbri M. Exosomic microRNAs in the tumor microenvironment. Frontiers in medicine. 2015;2:47.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Zhong J, Li B. Reduced expression of microRNA-134 correlates with malignancy and poor prognosis in human glioma. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2015;22:583–7.CrossRefGoogle Scholar
  42. 42.
    Yin C, Wang PQ, Xu WP, Yang Y, Zhang Q, Ning BF, et al. Hepatocyte nuclear factor-4alpha reverses malignancy of hepatocellular carcinoma through regulating mir-134 in the DLK1-DIO3 region. Hepatology. 2013;58:1964–76.CrossRefPubMedGoogle Scholar
  43. 43.
    Zha R, Guo W, Zhang Z, Qiu Z, Wang Q, Ding J, et al. Genome-wide screening identified that mir-134 acts as a metastasis suppressor by targeting integrin beta1 in hepatocellular carcinoma. PLoS One. 2014;9:e87665.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Shin YM, Yun J, Lee OJ, Han HS, Lim SN, An JY, et al. Diagnostic value of circulating extracellular mir-134, mir-185, and mir-22 levels in lung adenocarcinoma-associated malignant pleural effusion. Cancer research and treatment : official journal of Korean Cancer Association. 2014;46:178–85.CrossRefGoogle Scholar
  45. 45.
    Liu CJ, Shen WG, Peng SY, Cheng HW, Kao SY, Lin SC, et al. Mir-134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene. International journal of cancer Journal international du cancer. 2014;134:811–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Hall A. The cellular functions of small GTP-binding proteins. Science. 1990;249:635–40.CrossRefPubMedGoogle Scholar
  47. 47.
    Ryu MJ, Liu Y, Zhong X, Du J, Peterson N, Kong G, et al. Oncogenic Kras expression in postmitotic neurons leads to s100a8-s100a9 protein overexpression and gliosis. J Biol Chem. 2012;287:22948–58.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Milinkovic VP, Skender Gazibara MK, Manojlovic Gacic EM, Gazibara TM, Tanic NT. The impact of TP53 and RAS mutations on cerebellar glioblastomas. Exp Mol Pathol. 2014;97:202–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, et al. Mir-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13:252.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Ritchie W, Rasko JE, Flamant S. MicroRNA target prediction and validation. Adv Exp Med Biol. 2013;774:39–53.CrossRefPubMedGoogle Scholar
  51. 51.
    Chen T, Gao F, Feng S, Yang T, Chen M. MicroRNA-134 regulates lung cancer cell H69 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun. 2015;464:748–54.CrossRefPubMedGoogle Scholar
  52. 52.
    Wang XM, Jia RH, Wei D, Cui WY, Jiang W. Mir-134 blockade prevents status epilepticus like-activity and is neuroprotective in cultured hippocampal neurons. Neurosci Lett. 2014;572:20–5.CrossRefPubMedGoogle Scholar
  53. 53.
    Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H, et al. Mir-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther. 2014;13:444–53.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang X, Wang H, Zhang S, Song J, Zhang Y, Wei X, et al. Mir-134 functions as a regulator of cell proliferation, apoptosis, and migration involving lung septation. In vitro cellular & developmental biology Animal. 2012;48:131–6.CrossRefGoogle Scholar
  55. 55.
    Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.CrossRefPubMedGoogle Scholar
  56. 56.
    Bodemann BO, White MA. Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer. 2008;8:133–40.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Yuguang Zhao
    • 1
  • Dong Pang
    • 2
  • Cui Wang
    • 3
  • Shijiang Zhong
    • 4
  • Shuang Wang
    • 2
  1. 1.Department of Cell BiologyHarbin Medical UniversityHarbinChina
  2. 2.Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Land Reclamation of Community Health Service StationsGeneral Hospital of Heilongjiang Agricultural Reclamation BureauHarbinChina
  4. 4.Department of BrainThe Affiliated Hospital of Tianjin Armed Police CollegeTianjinChina

Personalised recommendations