Tumor Biology

, Volume 37, Issue 8, pp 11359–11364 | Cite as

Body composition of the host influences dendritic cell phenotype in patients treated for colorectal cancer

  • George Malietzis
  • Gui Han Lee
  • Hafid O. Al-Hassi
  • David Bernardo
  • Alexandra I. F. Blakemore
  • Robin H. Kennedy
  • Morgan Moorghen
  • John T. Jenkins
  • Stella C. Knight
Original Article

Abstract

Dendritic cells (DCs) are antigen-presenting cells that can acquire tumour antigens and initiate cytotoxic T cell reactions. Obesity has been proposed as a cause for tumours escaping immune surveillance, but few studies investigate the impact of other body composition parameters. We examined the relationship of DC phenotype with computer tomography (CT)-defined parameters in patients with colorectal cancer (CRC). DCs were identified within peripheral blood mononuclear cells by flow cytometry as HLA-DR positive and negative for markers of other cell lineages in 21 patients. Analysis of CT scans was used to calculate lumbar skeletal muscle index (LSMI) and mean muscle attenuation (MA). Positive correlation between the LSMI and expression of CD40 in all DCs (r = 0.45; p = 0.04) was demonstrated. The MA was positively correlated with scavenger receptor CD36 [all DCs (r = 0.60; p = 0.01) and myeloid DCs (r = 0.63; p < 0.01)]. However, the MA was negatively correlated with CCR7 expression in all DCs (r = −0.46, p = 0.03.) and with CD83 [all DCs (r = −0.63; p = 0.01) and myeloid DCs (r = −0.75; p < 0.01)]. There were no relationships between the fat indexes and the DC phenotype. These results highlight a direct relationship between muscle depletion and changes in stimulatory, migratory and fatty acid-processing potential of DC in patients with CRC.

Keywords

Body composition Myopenia Colorectal cancer Dendritic cells 

Notes

Acknowledgments

The authors gratefully acknowledge the support of the Biotechnology and Biological Sciences Research Council (BBSRC) (BBSRC Strategic Programme for Gut Health and Food Safety to the Institute for Food Research BB/J004529/1).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Legitimo A, Consolini R, Failli A, Orsini G, Spisni R. Dendritic cell defects in the colorectal cancer. Human Vaccin Immunother. 2014;10:3224–35.CrossRefGoogle Scholar
  2. 2.
    Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med. 2010;16:880–6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    O’Shea D, Corrigan M, Dunne MR, Jackson R, Woods C, Gaoatswe G, et al. Changes in human dendritic cell number and function in severe obesity may contribute to increased susceptibility to viral infection. Int J Obes. 2013;37:1510–3.CrossRefGoogle Scholar
  4. 4.
    Orsini G, Legitimo A, Failli A, Massei F, Biver P, Consolini R. Enumeration of human peripheral blood dendritic cells throughout the life. Int Immunol. 2012;24:347–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Clatworthy MR, Aronin CE, Mathews RJ, Morgan NY, Smith KG, Germain RN. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nat Med. 2014;20:1458–63.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fricke I, Gabrilovich DI. Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Investig. 2006;35:459–83.CrossRefGoogle Scholar
  7. 7.
    Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer. 2013;4:36–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Yuan A, Steigen SE, Goll R, Vonen B, Husbekk A, Cui G, et al. Dendritic cell infiltration pattern along the colorectal adenoma-carcinoma sequence. APMIS. 2008;116:445–56.CrossRefPubMedGoogle Scholar
  9. 9.
    Thibault R, Pichard C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab. 2012;60:6–16.CrossRefPubMedGoogle Scholar
  10. 10.
    Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997–1006.CrossRefPubMedGoogle Scholar
  11. 11.
    Doyle SL, Bennett AM, Donohoe CL, Mongan AM, Howard JM, Lithander FE, et al. Establishing computed tomography-defined visceral fat area thresholds for use in obesity-related cancer research. Nutr Res. 2013;33:171–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol. 2012;205:194–208.CrossRefGoogle Scholar
  15. 15.
    Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014;210:489–97.CrossRefGoogle Scholar
  16. 16.
    Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care. 2010;13:260–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Malietzis G, Johns N, Al-Hassi HO, Knight SC, Kennedy RH, Fearon KC, et al. Low muscularity and myosteatosis is related to the host systemic inflammatory response in patients undergoing surgery for colorectal cancer. Ann Surg. 2016;263:320–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Malietzis G, Aziz O, Bagnall NM, Johns N, Fearon KC, Jenkins JT. The role of body composition evaluation by computerized tomography in determining colorectal cancer treatment outcomes: a systematic review. Eur J Surg Oncol. 2015;41:186–96.CrossRefPubMedGoogle Scholar
  19. 19.
    Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222:R113–27.CrossRefPubMedGoogle Scholar
  20. 20.
    Macia L, Delacre M, Abboud G, Ouk TS, Delanoye A, Verwaerde C, et al. Impairment of dendritic cell functionality and steady-state number in obese mice. J Immunol. 2006;177:5997–6006.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith AG, Sheridan PA, Tseng RJ, Sheridan JF, Beck MA. Selective impairment in dendritic cell function and altered antigen-specific CD8+ T-cell responses in diet-induced obese mice infected with influenza virus. Immunology. 2009;126:268–79.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Stefanyk LE, Dyck DJ. The interaction between adipokines, diet and exercise on muscle insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2010;13:255–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Lutz CT, Quinn LS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging. 2012;4:535–46.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Quinn LS. Interleukin-15: a muscle-derived cytokine regulating fat-to-lean body composition. J Anim Sci. 2008;86:E75–83.CrossRefPubMedGoogle Scholar
  25. 25.
    Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol. 2004;97:2214–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Anguille S, Lion E, Van den Bergh J, Van Acker HH, Willemen Y, Smits EL, et al. Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Human Vaccin Immunother. 2013;9:1956–61.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • George Malietzis
    • 1
    • 2
  • Gui Han Lee
    • 1
    • 2
  • Hafid O. Al-Hassi
    • 1
  • David Bernardo
    • 1
    • 3
  • Alexandra I. F. Blakemore
    • 4
    • 5
  • Robin H. Kennedy
    • 2
  • Morgan Moorghen
    • 6
  • John T. Jenkins
    • 2
  • Stella C. Knight
    • 1
  1. 1.Antigen Presentation Research Group, Imperial College LondonNorth West London Hospitals CampusHarrowUK
  2. 2.Department of SurgerySt. Mark’s HospitalHarrow MiddlesexUK
  3. 3.Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP)Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD)MadridSpain
  4. 4.Section of Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Faculty of Medicine|Imperial CollegeLondonUK
  5. 5.Department of Life SciencesBrunel University LondonMiddlesexUK
  6. 6.Department of HistopathologySt. Mark’s HospitalHarrow MiddlesexUK

Personalised recommendations