Skip to main content
Log in

DPPIV/CD26: a tumor suppressor or a marker of malignancy?

Tumor Biology

Abstract

Dipeptidyl peptidase IV (DPPIV/CD26) is a multifunctional protein with intrinsic peptidase activity that inactivates or degrades some bioactive peptides. It is the main cellular binding protein for ecto-adenosine deaminase and interacts with extracellular matrix proteins, besides participating in different signaling pathways. Due to these multiple functions, DPPIV/CD26 has been shown to be closely related to the tumor process. It has been reported that the progression of certain types of cancer is accompanied by a decrease in DPPIV/CD26 expression, and studies have shown that the malignant phenotype can be reverted when DPPIV/CD26 expression is induced in these cancer cells, characterizing this protein as a tumor suppressor. On the other hand, DPPIV/CD26 was described as a protein associated with invasion and metastatic spread, characterizing it as a marker of malignancy. Thus, this review explores the roles of DPPIV/CD26 expression in tumor progression in different types of cancer and demonstrates the importance of this protein as a promising therapeutic target and tumor biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev. 1998;161:55–70.

    Article  CAS  PubMed  Google Scholar 

  2. De Meester I, Korom S, Van Damme J, Scharpe S. CD26, let it cut or cut it down. Immunol Today. 1999;20(8):367–75.

    Article  PubMed  Google Scholar 

  3. Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother: CII. 2009;58(11):1723–47. doi:10.1007/s00262-009-0728-1.

    Article  CAS  PubMed  Google Scholar 

  4. Dong RP, Tachibana K, Hegen M, Munakata Y, Cho D, Schlossman SF, et al. Determination of adenosine deaminase binding domain on CD26 and its immunoregulatory effect on T cell activation. J Immunol. 1997;159(12):6070–6.

    CAS  PubMed  Google Scholar 

  5. Cheng HC, Abdel-Ghany M, Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J Biol Chem. 2003;278(27):24600–7. doi:10.1074/jbc.M303424200.

    Article  CAS  PubMed  Google Scholar 

  6. Dang NH, Torimoto Y, Sugita K, Daley JF, Schow P, Prado C, et al. Cell surface modulation of CD26 by anti-1F7 monoclonal antibody. Analysis of surface expression and human T cell activation. J Immunol. 1990;145(12):3963–71.

    CAS  PubMed  Google Scholar 

  7. Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A. 1994;91(12):5657–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herrera C, Morimoto C, Blanco J, Mallol J, Arenzana F, Lluis C, et al. Comodulation of CXCR4 and CD26 in human lymphocytes. J Biol Chem. 2001;276(22):19532–9. doi:10.1074/jbc.M004586200.

    Article  CAS  PubMed  Google Scholar 

  9. Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. The role of CD26/dipeptidyl peptidase IV in cancer. Front Biosci : J virtual Library. 2008;13:1634–45.

    Article  CAS  Google Scholar 

  10. Eric-Nikolic A, Matic IZ, Dordevic M, Milovanovic Z, Markovic I, Dzodic R, et al. Serum DPPIV activity and CD26 expression on lymphocytes in patients with benign or malignant breast tumors. Immunobiology. 2011;216(8):942–6. doi:10.1016/j.imbio.2011.01.005.

    Article  CAS  PubMed  Google Scholar 

  11. Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, et al. Differential expression and enzymatic activity of DPPIV/CD26 affects migration ability of cervical carcinoma cells. PloS One. 2015;10(7):e0134305. doi:10.1371/journal.pone.0134305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Matic IZ, Ethordic M, Grozdanic N, Damjanovic A, Kolundzija B, Eric-Nikolic A, et al. Serum activity of DPPIV and its expression on lymphocytes in patients with melanoma and in people with vitiligo. BMC Immunol. 2012;13:48. doi:10.1186/1471-2172-13-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blanco-Prieto S, Vazquez-Iglesias L, Rodriguez-Girondo M, Barcia-Castro L, Fernandez-Villar A, Botana-Rial MI, et al. Serum calprotectin, CD26 and EGF to establish a panel for the diagnosis of lung cancer. PloS One. 2015;10(5):e0127318. doi:10.1371/journal.pone.0127318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nazarian A, Lawlor K, Yi SS, Philip J, Ghosh M, Yaneva M, et al. Inhibition of circulating dipeptidyl peptidase 4 activity in patients with metastatic prostate cancer. Mole Cell Proteomics : MCP. 2014;13(11):3082–96. doi:10.1074/mcp.M114.038836.

    Article  CAS  Google Scholar 

  15. Boccardi V, Marano L, Rossetti RR, Rizzo MR, di Martino N, Paolisso G. Serum CD26 levels in patients with gastric cancer: a novel potential diagnostic marker. BMC Cancer. 2015;15:703. doi:10.1186/s12885-015-1757-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. de la Haba-Rodriguez J, Macho A, Calzado MA, Blazquez MV, Gomez MA, Munoz EE, et al. Soluble dipeptidyl peptidase IV (CD-26) in serum of patients with colorectal carcinoma. Neoplasma. 2002;49(5):307–11.

    PubMed  Google Scholar 

  17. De Chiara L, Rodriguez-Pineiro AM, Cordero OJ, Vazquez-Tunas L, Ayude D, Rodriguez-Berrocal FJ, et al. Postoperative serum levels of sCD26 for surveillance in colorectal cancer patients. PloS One. 2014;9(9):e107470. doi:10.1371/journal.pone.0107470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fujimoto N, Ohnuma K, Aoe K, Hosono O, Yamada T, Kishimoto T, et al. Clinical significance of soluble CD26 in malignant pleural mesothelioma. PLoS One. 2014;9(12):e115647. doi:10.1371/journal.pone.0115647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wesley UV, Albino AP, Tiwari S, Houghton AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med. 1999;190(3):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pethiyagoda CL, Welch DR, Fleming TP. Dipeptidyl peptidase IV (DPPIV) inhibits cellular invasion of melanoma cells. Clin Exp Metastasis. 2000;18(5):391–400.

    Article  CAS  PubMed  Google Scholar 

  21. Wesley UV, Tiwari S, Houghton AN. Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int J Cancer J Int Cancer. 2004;109(6):855–66. doi:10.1002/ijc.20091.

    Article  CAS  Google Scholar 

  22. Kajiyama H, Kikkawa F, Suzuki T, Shibata K, Ino K, Mizutani S. Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res. 2002;62(10):2753–7.

    CAS  PubMed  Google Scholar 

  23. Kajiyama H, Kikkawa F, Khin E, Shibata K, Ino K, Mizutani S. Dipeptidyl peptidase IV overexpression induces up-regulation of E-cadherin and tissue inhibitors of matrix metalloproteinases, resulting in decreased invasive potential in ovarian carcinoma cells. Cancer Res. 2003;63(9):2278–83.

    CAS  PubMed  Google Scholar 

  24. Kikkawa F, Kajiyama H, Ino K, Shibata K, Mizutani S. Increased adhesion potency of ovarian carcinoma cells to mesothelial cells by overexpression of dipeptidyl peptidase IV. Int J Cancer J Int Cancer. 2003;105(6):779–83. doi:10.1002/ijc.11177.

    Article  CAS  Google Scholar 

  25. Mizokami Y, Kajiyama H, Shibata K, Ino K, Kikkawa F, Mizutani S. Stromal cell-derived factor-1alpha-induced cell proliferation and its possible regulation by CD26/dipeptidyl peptidase IV in endometrial adenocarcinoma. Int J Cancer J Int Cancer. 2004;110(5):652–9. doi:10.1002/ijc.20183.

    Article  CAS  Google Scholar 

  26. Wesley UV, McGroarty M, Homoyouni A. Dipeptidyl peptidase inhibits malignant phenotype of prostate cancer cells by blocking basic fibroblast growth factor signaling pathway. Cancer Res. 2005;65(4):1325–34. doi:10.1158/0008-5472.CAN-04-1852.

    Article  CAS  PubMed  Google Scholar 

  27. Arscott WT, LaBauve AE, May V, Wesley UV. Suppression of neuroblastoma growth by dipeptidyl peptidase IV: relevance of chemokine regulation and caspase activation. Oncogene. 2009;28(4):479–91. doi:10.1038/onc.2008.402.

    Article  CAS  PubMed  Google Scholar 

  28. Busek P, Stremenova J, Sromova L, Hilser M, Balaziova E, Kosek D, et al. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int J Biochem Cell Biol. 2012;44(5):738–47. doi:10.1016/j.biocel.2012.01.011.

    Article  CAS  PubMed  Google Scholar 

  29. Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6(6):603–15. doi:10.1016/j.stem.2010.04.001.

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto T, Iwata S, Yamazaki H, Hatano R, Komiya E, Dang NH, et al. CD9 negatively regulates CD26 expression and inhibits CD26-mediated enhancement of invasive potential of malignant mesothelioma cells. PLoS One. 2014;9(1):e86671. doi:10.1371/journal.pone.0086671.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sato T, Yamochi T, Yamochi T, Aytac U, Ohnuma K, McKee KS, et al. CD26 regulates p38 mitogen-activated protein kinase-dependent phosphorylation of integrin beta1, adhesion to extracellular matrix, and tumorigenicity of T-anaplastic large cell lymphoma Karpas 299. Cancer Res. 2005;65(15):6950–6. doi:10.1158/0008-5472.CAN-05-0647.

    Article  CAS  PubMed  Google Scholar 

  32. Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. CD26 expression on T cell lines increases SDF-1-alpha-mediated invasion. Br J Cancer. 2009;101(6):983–91. doi:10.1038/sj.bjc.6605236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu C, Tilan JU, Everhart L, Czarnecka M, Soldin SJ, Mendu DR, et al. Dipeptidyl peptidases as survival factors in Ewing sarcoma family of tumors: implications for tumor biology and therapy. J Biol Chem. 2011;286(31):27494–505. doi:10.1074/jbc.M111.224089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kikkawa F, Kajiyama H, Shibata K, Ino K, Nomura S, Mizutani S. Dipeptidyl peptidase IV in tumor progression. Biochim Biophys Acta. 2005;1751(1):45–51. doi:10.1016/j.bbapap.2004.09.028.

    Article  CAS  PubMed  Google Scholar 

  35. Houghton AN, Albino AP, Cordon-Cardo C, Davis LJ, Eisinger M. Cell surface antigens of human melanocytes and melanoma. Expression of adenosine deaminase binding protein is extinguished with melanocyte transformation. J Exp Med. 1988;167(1):197–212.

    Article  CAS  PubMed  Google Scholar 

  36. McGuinness C, Wesley UV. Dipeptidyl peptidase IV (DPPIV), a candidate tumor suppressor gene in melanomas is silenced by promoter methylation. Front Biosci : J Virtual Library. 2008;13:2435–43.

    Article  CAS  Google Scholar 

  37. Morrison ME, Vijayasaradhi S, Engelstein D, Albino AP, Houghton AN. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J Exp Med. 1993;177(4):1135–43.

    Article  CAS  PubMed  Google Scholar 

  38. Roesch A, Wittschier S, Becker B, Landthaler M, Vogt T. Loss of dipeptidyl peptidase IV immunostaining discriminates malignant melanomas from deep penetrating nevi. Mod Pathol: Off J U S Can Acad Pathol, Inc. 2006;19(10):1378–85. doi:10.1038/modpathol.3800663.

    Article  CAS  Google Scholar 

  39. Kajiyama H, Shibata K, Ino K, Mizutani S, Nawa A, Kikkawa F. The expression of dipeptidyl peptidase IV (DPPIV/CD26) is associated with enhanced chemosensitivity to paclitaxel in epithelial ovarian carcinoma cells. Cancer Sci. 2010;101(2):347–54. doi:10.1111/j.1349-7006.2009.01378.x.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang MZ, Qiao YH, Suo ZH. Correlation of DPPIV expression with clinicopathological features and prognosis in epithelial ovarian carcinoma. Zhonghua zhong liu za zhi [Chinese journal of oncology]. 2008;30(11):848–52.

    Google Scholar 

  41. Zhang M, Xu L, Wang X, Sun B, Ding J. Expression levels of seprase/FAPalpha and DPPIV/CD26 in epithelial ovarian carcinoma. Oncol Lett. 2015;10(1):34–42. doi:10.3892/ol.2015.3151.

    PubMed  PubMed Central  Google Scholar 

  42. Asada Y, Aratake Y, Kotani T, Marutsuka K, Araki Y, Ohtaki S, et al. Expression of dipeptidyl aminopeptidase IV activity in human lung carcinoma. Histopathology. 1993;23(3):265–70.

    Article  CAS  PubMed  Google Scholar 

  43. Gao AC, Lou W, Dong JT, Isaacs JT. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res. 1997;57(5):846–9.

    CAS  PubMed  Google Scholar 

  44. Herrlich P, Morrison H, Sleeman J, Orian-Rousseau V, Konig H, Weg-Remers S, et al. CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci. 2000;910:106–18.

    Article  CAS  PubMed  Google Scholar 

  45. Ariga N, Sato E, Ohuchi N, Nagura H, Ohtani H. Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer J Int Cancer. 2001;95(1):67–72.

    Article  CAS  Google Scholar 

  46. Liao Y, Ni Y, He R, Liu W, Du J. Clinical implications of fibroblast activation protein-alpha in non-small cell lung cancer after curative resection: a new predictor for prognosis. J Cancer Res Clin Oncol. 2013;139(9):1523–8. doi:10.1007/s00432-013-1471-8.

    Article  CAS  PubMed  Google Scholar 

  47. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010;330(6005):827–30. doi:10.1126/science.1195300.

    Article  CAS  PubMed  Google Scholar 

  48. Roudi R, Madjd Z, Korourian A, Mehrazma M, Molanae S, Sabet MN, et al. Clinical significance of putative cancer stem cell marker CD44 in different histological subtypes of lung cancer. Cancer Biomarkers: Section A Dis Markers. 2014;14(6):457–67. doi:10.3233/CBM-140424.

    CAS  Google Scholar 

  49. Yang SZ, Ji WH, Mao WM, Ling ZQ. Elevated levels of preoperative circulating CD44(+) lymphocytes and neutrophils predict poor survival for non-small cell lung cancer patients. Clinica chimica acta; IntJ Clin Chemistry. 2015;439:172–7. doi:10.1016/j.cca.2014.10.012.

    Article  CAS  Google Scholar 

  50. Khin EE, Kikkawa F, Ino K, Kajiyama H, Suzuki T, Shibata K, et al. Dipeptidyl peptidase IV expression in endometrial endometrioid adenocarcinoma and its inverse correlation with tumor grade. Am J Obstet Gynecol. 2003;188(3):670–6.

    Article  CAS  PubMed  Google Scholar 

  51. Tan CW, Lee YH, Tan HH, Lau MS, Choolani M, Griffith L, et al. CD26/DPPIV down-regulation in endometrial stromal cell migration in endometriosis. Fertil Steril. 2014;102(1):167–77 e9. doi:10.1016/j.fertnstert.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  52. Nakamoto T, Chang CS, Li AK, Chodak GW. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res. 1992;52(3):571–7.

    CAS  PubMed  Google Scholar 

  53. Giri D, Ropiquet F, Ittmann M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 1999;5(5):1063–71.

    CAS  Google Scholar 

  54. Dow JK, deVere White RW. Fibroblast growth factor 2: its structure and property, paracrine function, tumor angiogenesis, and prostate-related mitogenic and oncogenic functions. Urology. 2000;55(6):800–6.

    Article  CAS  PubMed  Google Scholar 

  55. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 2002;62(6):1832–7.

    CAS  PubMed  Google Scholar 

  56. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003;89(3):462–73. doi:10.1002/jcb.10522.

    Article  CAS  PubMed  Google Scholar 

  57. Sun YX, Pedersen EA, Shiozawa Y, Havens AM, Jung Y, Wang J, et al. CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis. 2008;25(7):765–76. doi:10.1007/s10585-008-9188-9.

    Article  CAS  PubMed  Google Scholar 

  58. Wilson MJ, Ruhland AR, Quast BJ, Reddy PK, Ewing SL, Sinha AA. Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. J Androl. 2000;21(2):220–6.

    CAS  PubMed  Google Scholar 

  59. Lu Z, Qi L, Bo XJ, Liu GD, Wang JM, Li G. Expression of CD26 and CXCR4 in prostate carcinoma and its relationship with clinical parameters. J Res Med Sci: Off J Isfahan Univ Med Sci. 2013;18(8):647–52.

    Google Scholar 

  60. Russell HV, Hicks J, Okcu MF, Nuchtern JG. CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediatr Surg. 2004;39(10):1506–11.

    Article  PubMed  Google Scholar 

  61. Busek P, Stremenova J, Krepela E, Sedo A. Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines. Physiol Res/Acad Sci Bohemoslovaca. 2008;57(3):443–9.

    CAS  Google Scholar 

  62. Mares V, Stremenova J, Lisa V, Kozakova H, Marek J, Syrucek M, et al. Compartment- and malignance-dependent up-regulation of gamma-glutamyltranspeptidase and dipeptidylpeptidase-IV activity in human brain gliomas. Histol Histopathol. 2012;27(7):931–40.

    CAS  PubMed  Google Scholar 

  63. Ghani FI, Yamazaki H, Iwata S, Okamoto T, Aoe K, Okabe K, et al. Identification of cancer stem cell markers in human malignant mesothelioma cells. Biochem Biophys Res Commun. 2011;404(2):735–42. doi:10.1016/j.bbrc.2010.12.054.

    Article  CAS  PubMed  Google Scholar 

  64. Herrmann H, Sadovnik I, Cerny-Reiterer S, Rulicke T, Stefanzl G, Willmann M, et al. Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood. 2014;123(25):3951–62. doi:10.1182/blood-2013-10-536078.

    Article  CAS  PubMed  Google Scholar 

  65. Davies S, Beckenkamp A, Buffon A. CD26 a cancer stem cell marker and therapeutic target. Biomed Pharmacother = Biomed Pharmacotherapie. 2015;71:135–8. doi:10.1016/j.biopha.2015.02.031.

    Article  CAS  Google Scholar 

  66. Nishikawa S, Konno M, Hamabe A, Hasegawa S, Kano Y, Fukusumi T, et al. Surgically resected human tumors reveal the biological significance of the gastric cancer stem cell markers CD44 and CD26. Oncol Lett. 2015;9(5):2361–7. doi:10.3892/ol.2015.3063.

    PubMed  PubMed Central  Google Scholar 

  67. Grunt TW, Hebar A, Laffer S, Wagner R, Peter B, Herrmann H, et al. Prominin-1 (CD133, AC133) and dipeptidyl-peptidase IV (CD26) are indicators of infinitive growth in colon cancer cells. Am J Cancer Res. 2015;5(2):560–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jang JH, Baerts L, Waumans Y, De Meester I, Yamada Y, Limani P, et al. Suppression of lung metastases by the CD26/DPP4 inhibitor vildagliptin in mice. Clin Exp Metastasis. 2015;32(7):677–87. doi:10.1007/s10585-015-9736-z.

    Article  CAS  PubMed  Google Scholar 

  69. Lam CS, Cheung AH, Wong SK, Wan TM, Ng L, Chow AK, et al. Prognostic significance of CD26 in patients with colorectal cancer. PLoS One. 2014;9(5):e98582. doi:10.1371/journal.pone.0098582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lieto E, Galizia G, Orditura M, Romano C, Zamboli A, Castellano P, et al. CD26-positive/CD326-negative circulating cancer cells as prognostic markers for colorectal cancer recurrence. Oncol Lett. 2015;9(2):542–50. doi:10.3892/ol.2014.2749.

    PubMed  Google Scholar 

  71. Larrinaga G, Perez I, Sanz B, Beitia M, Errarte P, Fernandez A, et al. Dipeptidyl-peptidase IV activity is correlated with colorectal cancer prognosis. PLoS One. 2015;10(3):e0119436. doi:10.1371/journal.pone.0119436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Inamoto T, Yamada T, Ohnuma K, Kina S, Takahashi N, Yamochi T, et al. Humanized anti-CD26 monoclonal antibody as a treatment for malignant mesothelioma tumors. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13(14):4191–200. doi:10.1158/1078-0432.CCR-07-0110.

    Article  CAS  Google Scholar 

  73. Aoe K, Amatya VJ, Fujimoto N, Ohnuma K, Hosono O, Hiraki A, et al. CD26 overexpression is associated with prolonged survival and enhanced chemosensitivity in malignant pleural mesothelioma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18(5):1447–56. doi:10.1158/1078-0432.CCR-11-1990.

    Article  CAS  Google Scholar 

  74. Dang NH, Torimoto Y, Schlossman SF, Morimoto C. Human CD4 helper T cell activation: functional involvement of two distinct collagen receptors, 1F7 and VLA integrin family. J Exp Med. 1990;172(2):649–52.

    Article  CAS  PubMed  Google Scholar 

  75. Yamazaki H, Naito M, Ghani FI, Dang NH, Iwata S, Morimoto C. Characterization of cancer stem cell properties of CD24 and CD26-positive human malignant mesothelioma cells. Biochem Biophys Res Commun. 2012;419(3):529–36. doi:10.1016/j.bbrc.2012.02.054.

    Article  CAS  PubMed  Google Scholar 

  76. Barkan D, Chambers AF. beta1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(23):7219–23. doi:10.1158/1078-0432.CCR-11-0642.

    Article  CAS  Google Scholar 

  77. Yamamoto J, Ohnuma K, Hatano R, Okamoto T, Komiya E, Yamazaki H, et al. Regulation of somatostatin receptor 4-mediated cytostatic effects by CD26 in malignant pleural mesothelioma. Br J Cancer. 2014;110(9):2232–45. doi:10.1038/bjc.2014.151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Komiya E, Ohnuma K, Yamazaki H, Hatano R, Iwata S, Okamoto T, et al. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells. Biochem Biophys Res Commun. 2014;447(4):609–15. doi:10.1016/j.bbrc.2014.04.037.

    Article  CAS  PubMed  Google Scholar 

  79. Yan W, Shao R. Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem. 2006;281(28):19700–8. doi:10.1074/jbc.M601856200.

    Article  CAS  PubMed  Google Scholar 

  80. Norris RA, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem. 2007;101(3):695–711. doi:10.1002/jcb.21224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morra L, Moch H. Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. Virchows Archiv: Int J Pathol. 2011;459(5):465–75. doi:10.1007/s00428-011-1151-5.

    Article  CAS  Google Scholar 

  82. Carbone A, Gloghini A, Zagonel V, Aldinucci D, Gattei V, Degan M, et al. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood. 1995;86(12):4617–26.

    CAS  PubMed  Google Scholar 

  83. Dang NH, Aytac U, Sato K, O’Brien S, Melenhorst J, Morimoto C, et al. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol. 2003;121(6):857–65.

    Article  PubMed  Google Scholar 

  84. Cro L, Morabito F, Zucal N, Fabris S, Lionetti M, Cutrona G, et al. CD26 expression in mature B-cell neoplasia: its possible role as a new prognostic marker in B-CLL. Hematol Oncol. 2009;27(3):140–7. doi:10.1002/hon.888.

    Article  CAS  PubMed  Google Scholar 

  85. Yamochi T, Yamochi T, Aytac U, Sato T, Sato K, Ohnuma K, et al. Regulation of p38 phosphorylation and topoisomerase IIalpha expression in the B-cell lymphoma line Jiyoye by CD26/dipeptidyl peptidase IV is associated with enhanced in vitro and in vivo sensitivity to doxorubicin. Cancer Res. 2005;65(5):1973–83. doi:10.1158/0008-5472.CAN-04-2611.

    Article  CAS  PubMed  Google Scholar 

  86. Sato K, Aytac U, Yamochi T, Yamochi T, Ohnuma K, McKee KS, et al. CD26/dipeptidyl peptidase IV enhances expression of topoisomerase II alpha and sensitivity to apoptosis induced by topoisomerase II inhibitors. Br J Cancer. 2003;89(7):1366–74. doi:10.1038/sj.bjc.6601253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aytac U, Sato K, Yamochi T, Yamochi T, Ohnuma K, Mills GB, et al. Effect of CD26/dipeptidyl peptidase IV on Jurkat sensitivity to G2/M arrest induced by topoisomerase II inhibitors. Br J Cancer. 2003;88(3):455–62. doi:10.1038/sj.bjc.6600791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fernandis AZ, Cherla RP, Ganju RK. Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45. J Biol Chem. 2003;278(11):9536–43. doi:10.1074/jbc.M211803200.

    Article  CAS  PubMed  Google Scholar 

  89. Havre PA, Dang LH, Ohnuma K, Iwata S, Morimoto C, Dang NH. CD26 expression on T-anaplastic large cell lymphoma (ALCL) line Karpas 299 is associated with increased expression of versican and MT1-MMP and enhanced adhesion. BMC Cancer. 2013;13:517. doi:10.1186/1471-2407-13-517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14(5):617–23.

    Article  CAS  PubMed  Google Scholar 

  91. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005;15(7):483–94. doi:10.1038/sj.cr.7290318.

    Article  CAS  PubMed  Google Scholar 

  92. Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M, et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol. 2004;167(4):769–81. doi:10.1083/jcb.200408028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol. 2001;153(5):893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kitlinska J, Abe K, Kuo L, Pons J, Yu M, Li L, et al. Differential effects of neuropeptide Y on the growth and vascularization of neural crest-derived tumors. Cancer Res. 2005;65(5):1719–28. doi:10.1158/0008-5472.CAN-04-2192.

    Article  CAS  PubMed  Google Scholar 

  95. Tilan JU, Lu C, Galli S, Izycka-Swieszewska E, Earnest JP, Shabbir A, et al. Hypoxia shifts activity of neuropeptide Y in Ewing sarcoma from growth-inhibitory to growth-promoting effects. Oncotarget. 2013;4(12):2487–501.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lefort EC, Blay J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis. 2011;28(4):337–49. doi:10.1007/s10585-010-9364-6.

    Article  CAS  PubMed  Google Scholar 

  97. Blay J, White TD, Hoskin DW. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997;57(13):2602–5.

    CAS  PubMed  Google Scholar 

  98. Mujoomdar M, Bennett A, Hoskin D, Blay J. Adenosine stimulation of proliferation of breast carcinoma cell lines: evaluation of the [3H]thymidine assay system and modulatory effects of the cellular microenvironment in vitro. J Cell Physiol. 2004;201(3):429–38. doi:10.1002/jcp.20089.

    Article  CAS  PubMed  Google Scholar 

  99. Montesinos MC, Desai A, Chen JF, Yee H, Schwarzschild MA, Fink JS, et al. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol. 2002;160(6):2009–18. doi:10.1016/S0002-9440(10)61151-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tan EY, Mujoomdar M, Blay J. Adenosine down-regulates the surface expression of dipeptidyl peptidase IV on HT-29 human colorectal carcinoma cells: implications for cancer cell behavior. Am J Pathol. 2004;165(1):319–30. doi:10.1016/S0002-9440(10)63299-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dong RP, Kameoka J, Hegen M, Tanaka T, Xu Y, Schlossman SF, et al. Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J Immunol. 1996;156(4):1349–55.

    CAS  PubMed  Google Scholar 

  102. Hafler DA, Chofflon M, Benjamin D, Dang NH, Breitmeyer J. Mechanisms of immune memory. T cell activation and CD3 phosphorylation correlates with Ta1 (CDw26) expression. J Immunol. 1989;142(8):2590–6.

    CAS  PubMed  Google Scholar 

  103. Tanaka T, Kameoka J, Yaron A, Schlossman SF, Morimoto C. The costimulatory activity of the CD26 antigen requires dipeptidyl peptidase IV enzymatic activity. Proc Natl Acad Sci U S A. 1993;90(10):4586–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ishii T, Ohnuma K, Murakami A, Takasawa N, Kobayashi S, Dang NH, et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci U S A. 2001;98(21):12138–43. doi:10.1073/pnas.211439098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ikushima H, Munakata Y, Ishii T, Iwata S, Terashima M, Tanaka H, et al. Internalization of CD26 by mannose 6-phosphate/insulin-like growth factor II receptor contributes to T cell activation. Proc Natl Acad Sci U S A. 2000;97(15):8439–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts JP, et al. Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett. 1998;432(1–2):73–6.

    Article  CAS  PubMed  Google Scholar 

  107. Iwata S, Yamaguchi N, Munakata Y, Ikushima H, Lee JF, Hosono O, et al. CD26/dipeptidyl peptidase IV differentially regulates the chemotaxis of T cells and monocytes toward RANTES: possible mechanism for the switch from innate to acquired immune response. Int Immunol. 1999;11(3):417–26.

    Article  CAS  PubMed  Google Scholar 

  108. Struyf S, Proost P, Schols D, De Clercq E, Opdenakker G, Lenaerts JP, et al. CD26/dipeptidyl-peptidase IV down-regulates the eosinophil chemotactic potency, but not the anti-HIV activity of human eotaxin by affecting its interaction with CC chemokine receptor 3. J Immunol. 1999;162(8):4903–9.

    CAS  PubMed  Google Scholar 

  109. Inamoto T, Yamochi T, Ohnuma K, Iwata S, Kina S, Inamoto S, et al. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27(kip1) enhancement, and disruption of binding to the extracellular matrix. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12(11 Pt 1):3470–7. doi:10.1158/1078-0432.CCR-06-0361.

    Article  CAS  Google Scholar 

  110. Ho L, Aytac U, Stephens LC, Ohnuma K, Mills GB, McKee KS, et al. In vitro and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299. Clin Cancer Res: Off J Am Assoc Cancer Res. 2001;7(7):2031–40.

    CAS  Google Scholar 

  111. Ohnuma K, Ishii T, Iwata S, Hosono O, Kawasaki H, Uchiyama M, et al. G1/S cell cycle arrest provoked in human T cells by antibody to CD26. Immunology. 2002;107(3):325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamaguchi U, Nakayama R, Honda K, Ichikawa H, Hasegawa T, Shitashige M, et al. Distinct gene expression-defined classes of gastrointestinal stromal tumor. J Clin Oncol: Off J Am Soc Clin Oncol. 2008;26(25):4100–8. doi:10.1200/JCO.2007.14.2331.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico; Universal 312174/2013-6; PQ2015 303457/2015-5) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Procad-CAPES, Edital no. 071/2013 - 15819) for the financial support to this study. Aline Beckenkamp and Samuel Davies are grateful to CAPES-Brazil for their Doctoral fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréia Buffon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckenkamp, A., Davies, S., Willig, J.B. et al. DPPIV/CD26: a tumor suppressor or a marker of malignancy?. Tumor Biol. 37, 7059–7073 (2016). https://doi.org/10.1007/s13277-016-5005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5005-2

Keywords

Navigation