Tumor Biology

, Volume 37, Issue 8, pp 11321–11329 | Cite as

miR-522 contributes to cell proliferation of hepatocellular carcinoma by targeting DKK1 and SFRP2

  • Hao Zhang
  • Chao Yu
  • Meiyuan Chen
  • Zhu Li
  • Se Tian
  • Jianxin Jiang
  • Chengyi Sun
Original Article


The morbidity and mortality of hepatocellular carcinoma (HCC) is very high, finding new therapeutic targets are critical for HCC treatment. miR-522 has been demonstrated to be upregulated in HCC tissues, but its role in HCC progression remains to be elucidated. In this report, we found miR-522 was upregulated in HCC cells and tissues, miR-522 overexpression promoted cell proliferation, colony formation, and cell cycle progression, whereas knockdown of miR-522 reduced these effects. We also analyzed the expression of several key cell cycle regulatory proteins and found overexpression of miR-522-inhibited cell cycle inhibitors p21 and p27 expression and enhanced cyclin D1 expression and the level of Rb phosphorylation, vice versa. These suggested miR-522-accelerated G1/S transition. DKK1 (dickkopf-1) and SFRP2 (secreted frizzled-related protein 2) were the targets of miR-522, their expression was inversely with miR-522 in HCC tissues. DKK1 and SFRP2 the antagonists of Wnt signaling, suggesting miR-522-promoted HCC progression through activating Wnt signaling. miR-522 might be a valuable target for HCC therapy.


miR-522 HCC DKK1 and SFRP2 Cell proliferation 



This work was supported by grants from the National Natural Science Foundation of China (no. 81160311, 81572429, and 81560477).

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_4995_Fig7_ESM.gif (17 kb)
Supplemental Figure 1

Knockdown of miR-522 inhibited cell proliferation rate in LO2. (GIF 17 kb)

13277_2016_4995_MOESM1_ESM.tif (46 kb)
High resolution image (TIF 46 kb)
13277_2016_4995_Fig8_ESM.gif (289 kb)
Supplemental Figure 2

Western blot determined the expression of cell cycle inhibitors p21 and p27 and cell cycle promoter Cyclin D1 and the phosporylation level of Rb in LO2 with miR-522 knockdown. α-Tubulin was used as the loading control. (GIF 288 kb)

13277_2016_4995_MOESM2_ESM.tif (427 kb)
High resolution image (TIF 426 kb)


  1. 1.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMedGoogle Scholar
  2. 2.
    Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.CrossRefPubMedGoogle Scholar
  4. 4.
    Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, van Poppel H, et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 2014;74:2591–603.CrossRefPubMedGoogle Scholar
  5. 5.
    Ke J, Zhao Z, Hong SH, Bai S, He Z, Malik F, et al. Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget. 2015;6:3709–21.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu Q, Li P, Chen X, Zong L, Jiang Z, Nan L, et al. miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget. 2015;6:14153–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis. 2012;33:1113–20.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 2012;18:5442–53.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Miao HL, Lei CJ, Qiu ZD, Liu ZK, Li R, Bao ST, et al. MicroRNA-520c-3p inhibits hepatocellular carcinoma cell proliferation and invasion through induction of cell apoptosis by targeting glypican-3. Hepatol Res. 2014;44:338–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Shen G, Jia H, Tai Q, Li Y, Chen D. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34:211–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Fedi P, Bafico A, Nieto Soria A, Burgess WH, Miki T, Bottaro DP, et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem. 1999;274:19465–72.CrossRefPubMedGoogle Scholar
  14. 14.
    MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cain CJ, Manilay JO. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies. Exp Hematol. 2013;41:3–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Wong CM, Fan ST, Ng IO. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer. 2001;92:136–45.CrossRefPubMedGoogle Scholar
  17. 17.
    Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets. 2008;9:1013–24.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu Y, Zhou R, Yuan X, Han N, Zhou S, Xu H, et al. DACH1 is a novel predictive and prognostic biomarker in hepatocellular carcinoma as a negative regulator of Wnt/beta-catenin signaling. Oncotarget. 2015;6:8621–34.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, et al. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56:1631–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Kerppola TK. Polycomb group complexes—many combinations, many functions. Trends Cell Biol. 2009;19:692–704.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z, et al. CUL4B activates Wnt/beta-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol. 2015;235:784–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012;13:817–26.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen L, Li M, Li Q, Wang CJ, Xie SQ. DKK1 promotes hepatocellular carcinoma cell migration and invasion through beta-catenin/MMP7 signaling pathway. Mol Cancer. 2013;12:157.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fatima S, Lee NP, Luk JM. Dickkopfs and Wnt/beta-catenin signalling in liver cancer. World J Clin Oncol. 2011;2:311–25.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Umer M, Qureshi SA, Hashmi ZY, Raza A, Ahmad J, Rahman M, et al. Promoter hypermethylation of Wnt pathway inhibitors in hepatitis C virus - induced multistep hepatocarcinogenesis. Virol J. 2014;11:117.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology. 2008;47:908–18.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shih YL, Hsieh CB, Yan MD, Tsao CM, Hsieh TY, Liu CH, et al. Frequent concomitant epigenetic silencing of SOX1 and secreted frizzled-related proteins (SFRPs) in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28:551–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang S, Zhang H, Zhu J, Zhang X, Liu Y. MiR-522 contributes to cell proliferation of human glioblastoma cells by suppressing PHLPP1 expression. Biomed Pharmacother. 2015;70:164–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Tan SM, Kirchner R, Jin J, Hofmann O, McReynolds L, Hide W, et al. Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR-522. Cell Rep. 2014;8:1225–39.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Hepatobiliary SurgeryAffiliated Hospital of Guiyang Medical CollegeGuiyangChina
  2. 2.Department of Hepatic-Biliary-Pancreatic SurgeryHubei Cancer HospitalWuhanChina

Personalised recommendations