Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 10935–10941 | Cite as

Association between p21 Ser31Arg polymorphism and the development of cervical lesion in women infected with high risk HPV

  • Géssica Lima
  • Erinaldo Santos
  • Hildson Angelo
  • Micheline Oliveira
  • Sandra Heráclio
  • Fernanda Leite
  • Celso de Melo
  • Sergio Crovella
  • Maria Maia
  • Paulo Souza
Original Article

Abstract

Infection by high-risk human papillomavirus (HR-HPV) and single nucleotide polymorphism (SNP) in genes involved in cell cycle control, as p21 and p27, are important factors in the development of different types of human cancers. This study aims at investigating whether both the p21 Ser31Arg and p27 V109G polymorphisms are associated with susceptibility to the development of cervical lesions in women HR-HPV positive. We analyzed 132 women HPV positive and with cervical lesions or CC and 154 healthy control (HPV negative and without cervical lesions). p21 Ser31Arg and p27 V109G polymorphisms were analyzed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and sequencing. The p21 31Arg allele was associated with susceptibility for the development of cervical lesions (P* = 0.0009), while p27 V109G polymorphism showed no significant differences for this association (P* = 0.89). However, the combined effect of the polymorphisms showed that the presence of the CC genotype (SNP p21 Ser31Arg) conferred protection for the development of cervical lesions (OR = 0.39). p21 Ser31Arg and p27 V109G polymorphisms were not associated with the grade of cervical lesions (CINI, CINII, and CINIII) or CC (P* > 0.05). The HR-HPV more frequent in this study were of 16 (57.6 %) and 18 (37.1 %) types; however, no association was observed when both polymorphisms and risk factors analyzed were compared (P* > 0.05). Our findings suggest a possible association between p21 Ser31tabArg polymorphism and susceptibility to the development of cervical lesions in women from Pernambuco. Brazil.

Keywords

SNPs Cell cycle Cervical cancer HPV 

Notes

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

13277_2016_4979_MOESM1_ESM.doc (100 kb)
ESM 1 (DOC 94 kb)
13277_2016_4979_MOESM2_ESM.doc (111 kb)
ESM 2 (DOC 101 kb)
13277_2016_4979_MOESM3_ESM.doc (347 kb)
ESM 3 (DOC 352 kb)

References

  1. 1.
    BRASIL. INCA. Instituto Nacional do Câncer. Ministério da Saúde. Cancer Prevalence Estimates 2014. Available online at: http://www.inca.gov.br/estimativa/2014/sintese-de-resultadocomentarios.asp (accessed May 13, 2014).
  2. 2.
    Snijders PJ, Steenbergen RD, Heideman DA, Meijer CJ. HPV-mediated cervical carcinogenesis: concepts and clinical implications. J Pathol. 2006;208:152–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Insinga RP, Dasbach EJ, Elbasha EH. Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) Disease: a critical and systematic review of the literature in the development of an HPV dynamic transmission model. BMC Infect Dis. 2009;9:119.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pei J, Jianxin L, Wen L, Xiaoxi Z, Jianxin T. Role of p53 and p21 polymorphisms in the risk of cervical cancer among Chinese women. Acta Biochim Biophys Sin. 2010;42:671–6.CrossRefGoogle Scholar
  5. 5.
    Tavares MCM, Macêdo JL, Júnior SFL, Heráclio AS, Amorim MMR, Maia MMD, et al. Chlamydia trachomatis infection and human papillomavirus in women with cervical neoplasia in Pernambuco-Brazil. Mol Biol Rep. 2014;41:865–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Cotran RS, Kumar V, Collins T. Robbins: patologia estrutural e funcional. 6.ed. Rio de Janeiro: Guanabara Koogan. 2000Google Scholar
  7. 7.
    Kumar V, Abbas A, Fausto N, Mitchell RN. Robbins: patologia básica. 8.ed. Rio de Janeiro: Guanabara Koogan. (2010)Google Scholar
  8. 8.
    Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. Biochim Biophys Acta. 2010;1799(10–12):788–94.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eleutério Junior J, Giraldo PC, Gonçalves AK. Marcadores imunoistoquímicos de lesões precursoras do câncer de colo uterino associadas ao HPV: o papel da proteína de supressão tumoral p16ink4a. DST J Bras Doenças Sex Transm. 2006;18(1):62–5.Google Scholar
  10. 10.
    Knebel MD. p16INK4a as a biomarker for differentiating replicating and transforming high risk HPV infections: the theoretical concept and its potential diagnostic impact HPV today, Newsletter on Human Papillomavirus. 2009; 7–8, M– 35437–2001.Google Scholar
  11. 11.
    Itamochi H, Yoshida T, Walker CL, Bartholomeusz C, Aoki D, Ishihara H, et al. Novel mechanism of reduced proliferation in ovarian clear cell carcinoma cells: cytoplasmic sequestration of CDK2 by p27. Gynecol Oncol. 2011;122:641.CrossRefPubMedGoogle Scholar
  12. 12.
    Bahnassy AA, Zekri AR, Saleh M, Lotayef M, Moneir M, Shawki O. The possible role of cell cycle regulators in multistep process of HPV-associated cervical carcinoma. BMC Clin Pathol. 2007;7:94–9.CrossRefGoogle Scholar
  13. 13.
    Koushik A, Platt RW, Franco EL. p53 Codon 72 Polymorphism and cervical neoplasia: a meta-analysis review. Cancer Epidemiol Biomarkers Prev. 2004;13:11–22.CrossRefPubMedGoogle Scholar
  14. 14.
    Harima Y, Sawada S, Nagata K, Sougawa M, Ostapenko V, Ohnishi T. Polymorphism of the WAF1 gene is related to susceptibility to cervical cancer in Japanese women. Int J Mol Med. 2001;7:261–4.PubMedGoogle Scholar
  15. 15.
    Xi YG, Ding KY, Su XL, Chen DF, You WC, Shen Y, et al. p53 polymorphism and p21WAF1/CIP1 haplotype in the intestinal gastric cancer and the precancerous lesions. Carcinogenesis. 2004;25:2201–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Choi YY, Kang HK, Choi JE, Jang JS, Kim EJ, Cha SI, et al. Comprehensive assessment of p21 polymorphisms and lung cancer risk. J Hum Genet. 2008;53:87–95.CrossRefPubMedGoogle Scholar
  17. 17.
    Lei D, Sturgis EM, Liu Z, Zafereo ME, Wei Q, Li G. Genetic polymorphisms of p21 and risk of second primary malignancy in patients with index squamous cell carcinoma of the head and neck. Carcinogenesis. 2010;31:222–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Van den Broeke C, Radu M, Chernoff J, Favoreel HW. An emerg- ing role for p21-activated kinases (paks) in viral infections. Trends Cell Biol. 2010;20:160–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang P, Liu J, Li W, Zeng X, Tang J. Role of p53 and p21 polymorphisms in the risk of cervical cancer among Chinese women. Acta Biochim Biophys Sin. 2010;42(9):671–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Pasquali D, Circelli L, Faggiano A, Pancione M, Renzullo A, Elisei R, et al. CDKN1B V109G polymorphism a new prognostic factor in sporadic medullary thyroid carcinoma. Eur J Endocrinol. 2011;164(3):397–404.CrossRefPubMedGoogle Scholar
  21. 21.
    Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, et al. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol. 1999;154(2):313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang LW, Chao SL, Hwang JL, Chou YY. Downregulation of p27 is associated with malignant transformation and aggressive phenotype of cervical neoplasms. Gynecol Oncol. 2002;85:524–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Kibel AS, Suarez BK, Belani J, Oh J, Webster R, Brophy-Ebbers M, et al. CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res. 2003;63:2033.PubMedGoogle Scholar
  24. 24.
    Li G, Sturgis EM, Wang LE, Chamberlain RM, Spitz MR, El-Naggar AK, et al. Association between the V109G polymorphism of the p27 gene and the risk and progression of oral squamous cell carcinoma. Clin Cancer Res. 2004;10:3996.CrossRefPubMedGoogle Scholar
  25. 25.
    Camargo-Kosugi CM, da Silva ID, Sato H, D’Amora P, Carvalho CV, Nogueira-de-Souza NC, et al. Eur J Obstetrics Gynecology Reproductive Biol. 2009;145:180–3.CrossRefGoogle Scholar
  26. 26.
    Tae KY, Kyoung CE, Hoon CN, Hung KJ, Ick Yang W, Wook KJ, et al. Expression of cyclin E and p27KIP1 in cervical carcinoma. Cancer Lett. 2000;153(1–2):41–50.Google Scholar
  27. 27.
    Goff BA, Sallin J, Garcia R, VanBlaricom A, Paley PJ, Muntz HG. Evaluation of p27 in preinvasive and invasive malignancies of the cervix. Gynecol Oncol. 2003;88:40–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Sgambato A, Zannoni GF, Faraglia B, Camerini A, Tarquini E, Spada D, et al. Decreased expression of the CDK inhibitor p27KIP1 and increased oxidative DNA damage in the multistep process of cervical carcino- genesis. Gynecol Oncol. 2004;92(3):776–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Solomon MR, Bamossy GJ, Askegaard S. Consumer behaviour: European perspective. London: Pearson Education Limited; 2002.Google Scholar
  30. 30.
    Associacão Brasileira de Genitoscopia. Nomenclatura para laudos Colposcópico. 2002; Available online at: http://www.colposcopy.org.br (accessed august 2015).
  31. 31.
    De Roda Husman AM, Walboomers JMM, van den Brule AJC, Meijer CJLM, Snijders PJF. The use of general primers GP5 and GP6 elongated at their 30 ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Vir. 1995;76:1057–62.CrossRefGoogle Scholar
  32. 32.
    Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells. 1989;7:209–14.Google Scholar
  33. 33.
    Karlsen F, Kalantari M, Jenkins A, Pettersen E, Kristensen G, Holm R, et al. Use of multiple PCR primer sets for optimal detection of human papillomavirus. J Clin Microbiol. 1996;34:2095–100.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Li YJ, Laurent-Puig P, Salmon RJ, Thomas G, Hamelin R. Polymorphisms and probable lack of mutation in the WAF1-CIP1 gene in colorectal cancer. Oncogene. 1995;10:599–601.PubMedGoogle Scholar
  35. 35.
    Chedid M, Michieli P, Lengel C, Huppi K, Givol D. A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene. 1994;9(10):3021–4.PubMedGoogle Scholar
  36. 36.
    Wang Z, Sturgis EM, Zhang F, Lei D, Liu Z, Xu L, et al. Genetic variants of p27 and p21 as predictors for risk of second primary malignancy in patients with index squamous cell carcinoma of head and neck. Mol Cancer. 2012;11:17.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bhattacharya P, Sengupta S. Lack of evidence that proline homozygos- ity at codon 72 of p53 and rare arginine allele at codon 31 of p21, jointly mediate cervical cancer susceptibility among Indian women. Gynecol Oncol. 2005;99:176–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Ning W, Shizhuo W, Qiao Z, Yanming L, Heng W, Wei L, et al. Association of p21 SNPs and risk of cervical cancer among Chinese women. BMC Cancer. 2012;12:589.CrossRefGoogle Scholar
  39. 39.
    Roh J, Kim M, Kim J, Park N, Song Y, Kang S, et al. Polymorphisms in codon 31 of p21 and cervical cancer susceptibility in Korean women. Cancer Lett. 2001;165:59–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Tian Q, Lu W, Chen H, Ye F, Xie X. The nonsynonymous single-nucleotide polymorphisms in codon 31 of p21 gene and the susceptibility to cervical cancer in Chinese women. Int J Gynecol Cancer. 2009;19:1011–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Birgander R, Sjalander A, Saha N, Spitsyn V, Beckman L, Beckman G. The codon 31 polymorphism of the p53-inducible gene p21 shows dis- tinct differences between major ethnic groups. Hum Hered. 1996;46:148–54.CrossRefPubMedGoogle Scholar
  42. 42.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Stah M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. JImmuno. 2002;168:5024–31.CrossRefGoogle Scholar
  44. 44.
    Oliveira-Silva M, Lordello CX, Zardo LM, Bonvicino CR, Moreira MA. Human papillomavirus in Brazilian women with and without cervical lesions. 2011; Virol J 8:4.Google Scholar
  45. 45.
    da Silva MF B, Chagas BS, Guimarães V, Katz LM, Felix PM, Miranda PM, et al. HPV31 and HPV33 incidence in cervical samples from women in Recife, Brazil. Genet Mol Res. 2009;8:1437–43.CrossRefGoogle Scholar
  46. 46.
    Lorenzato F, Ho L, Terry G, Singer A, Santos LC, De Lucena Batista R, et al. The use of human papillomavirus typing in detection of cervical neoplasia in Recife (Brazil). Int J Gynecol Cancer. 2000;10:143–50.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Géssica Lima
    • 1
  • Erinaldo Santos
    • 2
  • Hildson Angelo
    • 3
    • 4
  • Micheline Oliveira
    • 5
  • Sandra Heráclio
    • 6
  • Fernanda Leite
    • 7
  • Celso de Melo
    • 8
  • Sergio Crovella
    • 3
    • 9
  • Maria Maia
    • 2
    • 7
  • Paulo Souza
    • 1
    • 2
    • 7
  1. 1.Post-Graduate Program in Cellular and Molecular Biology AppliedUniversity of Pernambuco (UPE)RecifeBrazil
  2. 2.Post-Graduate Program in Tropical Animal ScienceRural Federal University of Pernambuco (UFRPE)RecifeBrazil
  3. 3.Post-Graduate Program in GeneticFederal University of Pernambuco (UFPE)RecifeBrazil
  4. 4.Federal Institute of Pernambuco – Campus Garanhuns (IFPE/Garanhuns)GaranhunsBrazil
  5. 5.Post-Graduate Program in Biological ScienceFederal University of Pernambuco (UFPE)RecifeBrazil
  6. 6.Departament of Lower Genital Tract Pathology, Women’s Healthcare CenterInstituto de Medicina Integral Prof. Fernando Figueira (IMIP)RecifeBrazil
  7. 7.Department of BiologyRural Federal University of Pernambuco (UFRPE)RecifeBrazil
  8. 8.Departament of PhysicsFederal University of Pernambuco (UFPE)RecifeBrazil
  9. 9.Departament of GeneticsFederal University of Pernambuco (UFPE)RecifeBrazil

Personalised recommendations