Skip to main content
Log in

The interplay between microRNAs and Twist1 transcription factor: a systematic review

Tumor Biology

Abstract

Twist1 (also known as Twist) is a transcription factor that belongs to the family of basic helix-loop-helix (bHLH) proteins. It functions as a negative regulator of epithelial gene expression and a positive regulator of mesenchymal gene expression, thereby leading to induction of the epithelial mesenchymal transition (EMT), a process in which epithelial cells acquire the motile and migratory characteristics of mesenchymal cells. In addition to regulating the expression of protein-coding genes, Twist1 regulates the expression of microRNAs (miRNAs), adding a regulatory layer to EMT induction. Interestingly, the mRNA of Twist1 represents a downstream target of miRNAs, indicating an intricate network between miRNAs and Twist1. This network was shown to play multiple roles in cancer cell migration, invasion, and metastasis. The network can induce angiogenesis, protect cells from oncogene-induced apoptosis and senescence, enhance cancer cell resistance to conventional therapies, and increase cancer stem cell (CSC) populations. Recently, miRNAs have attracted considerable attention as potential promising tools in cancer therapies. Thus, this systematic review was conducted to clarify the reciprocal link between Twist1 and miRNAs in order to provide potential candidate miRNAs for diagnostic and therapeutic approaches in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Thisse B, el Messal M, Perrin-Schmitt F. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res. 1987;15(8):3439–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell. 1989;58(3):537–44.

    Article  CAS  PubMed  Google Scholar 

  3. Jan YN, Jan LY. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell. 1993;75(5):827–30.

    Article  CAS  PubMed  Google Scholar 

  4. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22(1):90–106. doi:10.1038/cr.2011.144.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang HY, Cai K, Wang J, Wang XY, Cheng K, Shi FF, et al. MiR-7, inhibited indirectly by LincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32(11):2858–68. doi:10.1002/stem.1795.

    Article  CAS  PubMed  Google Scholar 

  6. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35. doi:10.1242/jcs.000455.

    Article  CAS  PubMed  Google Scholar 

  7. Haga CL, Phinney DG. MicroRNAs in the imprinted DLK1-DIO3 region repress the epithelial-to-mesenchymal transition by targeting the TWIST1 protein signaling network. J Biol Chem. 2012;287(51):42695–707. doi:10.1074/jbc.M112.387761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu JS, Xie FR, Bao X, Chen WT, Xu Q. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer. Molecular cancer. 2014;13. doi:10.1186/1476-4598-13-121.

  9. Bing L, Hong C, Li-Xin S, Wei G. MicroRNA-543 suppresses endometrial cancer oncogenicity via targeting FAK and TWIST1 expression. Arch Gynecol Obstet. 2014;290(3):533–41. doi:10.1007/s00404-014-3219-3.

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, Cui J, Liao GQ, Zhang Y, Ye K, Lu TL, et al. miR-137 regulates epithelial-mesenchymal transition in gastrointestinal stromal tumor. Tumor Biol. 2014;35(9):9131–8. doi:10.1007/s13277-014-2177-5.

    Article  CAS  Google Scholar 

  11. Zhu X, Shen H, Yin X, Long L, Xie C, Liu Y et al. miR-186 regulation of Twist1 and ovarian cancer sensitivity to cisplatin. Oncogene. 2015. doi:10.1038/onc.2015.84.

  12. Nairismägi ML, Vislovukh A, Meng Q, Kratassiouk G, Beldiman C, Petretich M, et al. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene. 2012;31(47):4960–6. doi:10.1038/onc.2011.650.

    Article  CAS  PubMed  Google Scholar 

  13. Li LZ, Zhang CZ, Liu LL, Yi C, Lu SX, Zhou X, et al. miR-720 inhibits tumor invasion and migration in breast cancer by targeting TWIST1. Carcinogenesis. 2014;35(2):469–78. doi:10.1093/carcin/bgt330.

    Article  CAS  PubMed  Google Scholar 

  14. Dong P, Kaneuchi M, Watari H, Sudo S, Sakuragi N. MicroRNA-106b modulates epithelial-mesenchymal transition by targeting TWIST1 in invasive endometrial cancer cell lines. Mol Carcinog. 2014;53(5):349–59. doi:10.1002/mc.21983.

    Article  CAS  PubMed  Google Scholar 

  15. Tsukerman P, Yamin R, Seidel E, Khawaled S, Schmiedel D, Bar-Mag T, et al. MiR-520d-5p directly targets TWIST1 and downregulates the metastamiR miR-10b. Oncotarget. 2014;5(23):12141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, et al. MiR-675 mediates downregulation of twist1 and rb in afp-secreting hepatocellular carcinoma. Ann Surg Oncol. 2013;20(3):S625–S35. doi:10.1245/s10434-013-3106-3.

    Article  PubMed  Google Scholar 

  17. Zhang P, Huang C, Fu C, Tian Y, Hu Y, Wang B, et al. Cordycepin (3′-deoxyadenosine) suppressed HMGA2, Twist1 and ZEB1-dependent melanoma invasion and metastasis by targeting miR-33b. Oncotarget. 2015;6(12):9834–53.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nairismägi ML, Füchtbauer A, Labouriau R, Bramsen JB, Füchtbauer EM. The proto-oncogene TWIST1 is regulated by microRNAs. PloS One. 2013;8(5). doi:10.1371/journal.pone.0066070.

  19. Zhou Y, Huang ZF, Wu S, Zang XF, Liu M, Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res. 2014;33. doi:10.1186/1756-9966-33-12.

  20. Dong ZL, Ren L, Lin L, Li J, Huang YW, Li JH. Effect of microRNA-21 on multidrug resistance reversal in A549/DDP human lung cancer cells. Mole Med Rep. 2015;11(1):682–90. doi:10.3892/mmr.2014.2662.

    CAS  Google Scholar 

  21. Singh N, Liu G, Chakrabarty S. Isolation and characterization of calcium sensing receptor null cells: a highly malignant and drug resistant phenotype of colon cancer. Int J Cancer. 2013;132(9):1996–2005. doi:10.1002/ijc.27902.

    Article  CAS  PubMed  Google Scholar 

  22. van der Fits L, Out-Luiting JJ, Tensen CP, Zoutman WH, Vermeer MH. Exploring the IL-21-STAT3 axis as therapeutic target for Sezary syndrome. J Invest Dermatol. 2014;134(10):2639–47. doi:10.1038/jid.2014.199.

    Article  CAS  PubMed  Google Scholar 

  23. Luo F, Ji J, Liu Y, Xu Y, Zheng G, Jing J, et al. MicroRNA-21, up-regulated by arsenite, directs the epithelial-mesenchymal transition and enhances the invasive potential of transformed human bronchial epithelial cells by targeting PDCD4. Toxicol Lett. 2015;232(1):301–9. doi:10.1016/j.toxlet.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  24. Su JL, Chen PB, Chen YH, Chen SC, Chang YW, Jan YH, et al. Downregulation of microRNA miR-520h by E1A contributes to anticancer activity. Cancer Res. 2010;70(12):5096–108. doi:10.1158/0008-5472.can-09-4148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie YK, Huo SF, Zhang G, Zhang F, Lian ZP, Tang XL, et al. CDA-2 induces cell differentiation through suppressing Twist/SLUG signaling via miR-124 in glioma. J Neuro-Oncol. 2012;110(2):179–86. doi:10.1007/s11060-012-0961-x.

    Article  CAS  Google Scholar 

  26. Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73. doi:10.1158/1535-7163.mct-12-0100.

    Article  CAS  PubMed  Google Scholar 

  27. Al-Khalaf HH, Aboussekhra A. MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding protein AUF1 targeting the transcription factor ZEB1 and the protein kinase AKT. J Biol Chem. 2014;289(45):31433–47. doi:10.1074/jbc.M114.593004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Renjie W, Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett. 2015;356(2):568–78. doi:10.1016/j.canlet.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  29. Ke J, Zhao Z, Hong SH, Bai S, He Z, Malik F, et al. Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget. 2015;6(6):3709–21.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen DH, Sun YT, Yuan Y, Han ZB, Zhang PJ, Zhang JS et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10(2). doi:10.1371/journal.pgen.1004177.

  31. Hardin H, Guo Z, Shan W, Montemayor-Garcia C, Asioli S, Yu XM, et al. The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am J Pathol. 2014;184(8):2342–54. doi:10.1016/j.ajpath.2014.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li BL, Lu W, Lu C, Qu JJ, Yang TT, Yan Q et al. CpG island hypermethylation-associated silencing of microRNAs promotes human endometrial cancer. Cancer Cell Int. 2013;13. doi:10.1186/1475-2867-13-44.

  33. Ding L, Zhao L, Chen W, Liu T, Li Z, Li X. MiR-210, a modulator of hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cell. Int J Clin Exp Med. 2015;8(2):2299–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng FS, Zhang HL, Du YH, Tan PQ. miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through Twist. Oncol Rep. 2015;33(2):942–50. doi:10.3892/or.2014.3664.

    CAS  PubMed  Google Scholar 

  35. Liu BN, Wu X, Liu B, Wang CL, Liu YD, Zhou QH, et al. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochimica Et Biophysica Acta-Mole Basis Dis. 2012;1822(11):1692–704. doi:10.1016/j.bbadis.2012.07.019.

    Article  CAS  Google Scholar 

  36. Wang R, Li YM, Hou YY, Yang QL, Chen SL, Wang X, et al. The PDGF-D/miR-106a/Twist1 pathway orchestrates epithelial-mesenchymal transition in gemcitabine resistance hepatoma cells. Oncotarget. 2015;6(9):7000–10.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang Q, Wang Z, Chu L, Li X, Kan P, Xin X et al. The effects and molecular mechanisms of MiR-106a in multidrug resistance reversal in human glioma U87/DDP and U251/G cell lines. PloS one. 2015;10(5). doi:10.1371/journal.pone.0125473.

  38. Li B, Han QQ, Zhu Y, Yu Y, Wang JH, Jiang XQ. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J. 2012;279(13):2393–8. doi:10.1111/j.1742-4658.2012.08618.x.

    Article  CAS  PubMed  Google Scholar 

  39. Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C, et al. TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene. 2010;29(24):3545–53. doi:10.1038/onc.2010.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu M, Wang J, Huang H, Hou J, Zhang B, Wang A. MiR-181a-Twist1 pathway in the chemoresistance of tongue squamous cell carcinoma. Biochem Biophys Res Commun. 2013;441(2):364–70. doi:10.1016/j.bbrc.2013.10.051.

    Article  CAS  PubMed  Google Scholar 

  41. Meng FY, Glaser SS, Francis H, DeMorrow S, Han YY, Passarini JD, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16(1):160–73. doi:10.1111/j.1582-4934.2011.01282.x.

    Article  CAS  PubMed  Google Scholar 

  42. Loayza-Puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M. Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene. 2010;29(18):2638–48. doi:10.1038/onc.2010.23.

    Article  CAS  PubMed  Google Scholar 

  43. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA 10b in breast cancer. Nature. 2007;449(7163):682–U2. doi:10.1038/nature06174.

    Article  CAS  PubMed  Google Scholar 

  44. Bourguignon LYW, Wong G, Earle C, Krueger K, Spevak CC. Hyaluronan-CD44 interaction promotes c-Src-mediated Twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285(47):36721–35. doi:10.1074/jbc.M110.162305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen XK, Fang JP, Lv XF, Pei ZC, Wang Y, Jiang SS, et al. Heparin impairs angiogenesis through inhibition of microRNA-10b. J Biol Chem. 2011;286(30):26616–27. doi:10.1074/jbc.M111.224212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li G, Wu ZR, Peng Y, Liu X, Lu JA, Wang L, et al. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett. 2010;299(1):29–36. doi:10.1016/j.canlet.2010.07.021.

    Article  CAS  PubMed  Google Scholar 

  47. Haque I, Banerjee S, Mehta S, De A, Majumder M, Mayo MS, et al. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1 alpha-TWIST signaling networks in human breast cancer cells. J Biol Chem. 2011;286(50):43475–85. doi:10.1074/jbc.M111.284158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li J, Zucker S, Pulkoski-Gross A, Kuscu C, Karaayvaz M, Ju J et al. Conversion of stationary to invasive tumor initiating cells (TICs): role of hypoxia in membrane type 1-matrix metalloproteinase (MT1-MMP) trafficking. PloS one. 2012;7(6). doi:10.1371/journal.pone.0038403.

  49. Liu Z, Zhu JM, Cao H, Ren H, Fang XD. miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. Int J Oncol. 2012;40(5):1553–60. doi:10.3892/ijo.2012.1342.

    CAS  PubMed  Google Scholar 

  50. Li X, Xu F, Chang CK, Byon J, Papayannopoulou T, Deeg HJ, et al. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica. 2013;98(3):414–9. doi:10.3324/haematol.2012.071753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, et al. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010;116(9):2148–58. doi:10.1002/cncr.25009.

    PubMed  Google Scholar 

  52. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, et al. RAC1 activation mediates Twist1-induced cancer cell migration. Nat Cell Biol. 2012;14(4):366–74. doi:10.1038/ncb2455.

    Article  CAS  PubMed  Google Scholar 

  53. Tsai CH, Lin LT, Wang CY, Chiu YW, Chou YT, Chiu SJ, et al. Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochimica Et Biophysica Acta-Mole Basis Dis. 2015;1852(5):851–61. doi:10.1016/j.bbadis.2015.01.007.

    Article  CAS  Google Scholar 

  54. Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, Lu SW, et al. Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep. 2011;26(4):1003–10. doi:10.3892/or.2011.1360.

    CAS  PubMed  Google Scholar 

  55. Li XH, Zhang Y, Zhang HW, Liu XN, Gong TQ, Li MB, et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011;9(7):824–33. doi:10.1158/1541-7786.mcr-10-0529.

    Article  CAS  PubMed  Google Scholar 

  56. Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int J Cancer. 2011;128(6):1327–34. doi:10.1002/ijc.25461.

    Article  CAS  PubMed  Google Scholar 

  57. Neves R, Scheel C, Weinhold S, Honisch E, Iwaniuk KM, Trompeter HI et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes. 2010;3. doi:10.1186/1756-0500-3-219.

  58. Dave N, Guaita-Esteruelas S, Gutarra S, Frias A, Beltran M, Peiro S et al. Functional cooperation between Snail1 and Twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem. 2011;286(14). doi:10.1074/jbc.M110.168625.

  59. Cong NN, Du P, Zhang AL, Shen FJ, Su J, Pu PY, et al. Downregulated microRNA-200a promotes EMT and tumor growth through the Wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep. 2013;29(4):1579–87. doi:10.3892/or.2013.2267.

    CAS  PubMed  Google Scholar 

  60. Cai ZG, Zhang SM, Zhang H, Zhou YY, Wu HB, Xu XP. Aberrant expression of microRNAs involved in epithelial-mesenchymal transition of HT-29 cell line. Cell Biol Int. 2013;37(7):669–74. doi:10.1002/cbin.10087.

    Article  CAS  PubMed  Google Scholar 

  61. Sureban SM, May R, Lightfoot SA, Hoskins AB, Lerner M, Brackett DJ, et al. DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism. Cancer Res. 2011;71(6):2328–38. doi:10.1158/0008-5472.can-10-2738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeh TS, Wang F, Chen TC, Yeh CN, Yu MC, Jan YY, et al. Expression profile of microRNA-200 family in hepatocellular carcinoma with bile duct tumor thrombus. Ann Surg. 2014;259(2):346–54. doi:10.1097/SLA.0000000000000223.

    Article  PubMed  Google Scholar 

  63. Nakashima H, Hashimoto N, Aoyama D, Kohnoh T, Sakamoto K, Kusunose M, et al. Involvement of the transcription factor twist in phenotype alteration through epithelial-mesenchymal transition in lung cancer cells. Mol Carcinog. 2012;51(5):400–10. doi:10.1002/mc.20802.

    Article  CAS  PubMed  Google Scholar 

  64. Lombardo Y, Faronato M, Filipovic A, Vircillo V, Magnani L, Coombes RC. Nicastrin and Notch4 drive endocrine therapy resistance and epithelial to mesenchymal transition in MCF7 breast cancer cells. Breast Cancer Res. 2014;16(3). doi:10.1186/bcr3675.

  65. Cieply B, Riley P, Pifer PM, Widmeyer J, Addison JB, Ivanov AV, et al. Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res. 2012;72(9):2440–53. doi:10.1158/0008-5472.can-11-4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, et al. EMT is the dominant program in human colon cancer. BMC Med Genomics. 2011;4:9. doi:10.1186/1755-8794-4-9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A. 2010;107(35):15449–54. doi:10.1073/pnas.1004900107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Castilla MA, Moreno-Bueno G, Romero-Perez L, Van De Vijver K, Biscuola M, Lopez-Garcia MA, et al. Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol. 2011;223(1):72–80. doi:10.1002/path.2802.

    Article  CAS  PubMed  Google Scholar 

  69. Wang CH, Chen CL, More SV, Hsiao PW, Hung WC, Li WS. The tetraindole SK228 reverses the epithelial-to-mesenchymal transition of breast cancer cells by up-regulating members of the miR-200 family. PloS one. 2014;9(6). doi:10.1371/journal.pone.0101088.

  70. Antoon JW, Nitzchke AM, Martin EC, Rhodes LV, Nam S, Wadsworth S, et al. Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. Int J Oncol. 2013;42(4):1139–50. doi:10.3892/ijo.2013.1814.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, et al. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011;18(1):16–25. doi:10.1038/cdd.2010.103.

    Article  CAS  PubMed  Google Scholar 

  72. Mak KK, Wu AT, Lee WH, Chang TC, Chiou JF, Wang LS, et al. Pterostilbene, a bioactive component of blueberries, suppresses the generation of breast cancer stem cells within tumor microenvironment and metastasis via modulating NF-kappaB/microRNA 448 circuit. Mol Nutr Food Res. 2013;57(7):1123–34. doi:10.1002/mnfr.201200549.

    Article  CAS  PubMed  Google Scholar 

  73. Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol. 2008;20(2):214–21. doi:10.1016/j.ceb.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  74. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  75. Chen L, Chen R, Kemper S, Charrier A, Brigstock DR. Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1. American journal of physiology Gastrointestinal and liver physiology. 2015:ajpgi.00140.2015. doi:10.1152/ajpgi.00140.2015.

  76. Cleyle S, Glynn L. A critical appraisal tool for library and information research. Library Hi Tech. 2006;24(3):387–99.

  77. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20(12):1603–14. doi:10.1038/cdd.2013.125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gerin I, Clerbaux L-A, Haumont O, Lanthier N, Das AK, Burant CF, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem. 2010;285(44):33652–61. doi:10.1074/jbc.M110.152090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-kappaB and TGF-beta signaling pathways. Oncogene. 2012;31(37):4150–63. doi:10.1038/onc.2011.571.

    Article  CAS  PubMed  Google Scholar 

  80. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270(2):488–98. doi:10.1016/j.ydbio.2004.02.019.

    Article  CAS  PubMed  Google Scholar 

  81. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell. 2001;107(6):789–800.

    Article  CAS  PubMed  Google Scholar 

  82. Morioka Y, Monypenny J, Matsuzaki T, Shi S, Alexander DB, Kitayama H, et al. The membrane-anchored metalloproteinase regulator RECK stabilizes focal adhesions and anterior-posterior polarity in fibroblasts. Oncogene. 2009;28(11):1454–64. doi:10.1038/onc.2008.486.

    Article  CAS  PubMed  Google Scholar 

  83. Muraguchi T, Takegami Y, Ohtsuka T, Kitajima S, Chandana EP, Omura A, et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci. 2007;10(7):838–45. doi:10.1038/nn1922.

    Article  CAS  PubMed  Google Scholar 

  84. Li X, Marcondes AM, Gooley TA, Deeg HJ. The helix-loop-helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood. 2010;116(13):2304–14. doi:10.1182/blood-2009-09-242313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parrella P, Barbano R, Pasculli B, Fontana A, Copetti M, Valori VM et al. Evaluation of microRNA-10b prognostic significance in a prospective cohort of breast cancer patients. Molecular cancer. 2014;13:142-. doi:10.1186/1476-4598-13-142.

  86. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9. doi:10.1038/35040556.

    Article  CAS  PubMed  Google Scholar 

  87. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6. doi:10.1038/35002607.

    Article  CAS  PubMed  Google Scholar 

  88. Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, et al. MicroRNA-200a suppresses the Wnt/beta-catenin signaling pathway by interacting with beta-catenin. Int J Oncol. 2012;40(4):1162–70. doi:10.3892/ijo.2011.1322.

    CAS  PubMed  Google Scholar 

  89. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907. doi:10.1101/gad.1640608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9(6):582–9. doi:10.1038/embor.2008.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Madhusudan S, Tamir A, Bates N, Flanagan E, Gore ME, Barton DP, et al. A multicenter phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res : Off J Am Assoc Cancer Res. 2004;10(9):2986–96.

    Article  CAS  Google Scholar 

  92. Yoo GH, Hung MC, Lopez-Berestein G, LaFollette S, Ensley JF, Carey M, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2001;7(5):1237–45.

    CAS  Google Scholar 

  93. Hung MC, Hortobagyi GN, Ueno NT. Development of clinical trial of E1A gene therapy targeting HER-2/neu-overexpressing breast and ovarian cancer. Adv Exp Med Biol. 2000;465:171–80. doi:10.1007/0-306-46817-4_16.

    Article  CAS  PubMed  Google Scholar 

  94. Bader AG, Brown D, Stoudemire J, Lammers P. Developing therapeutic microRNAs for cancer. Gene Ther. 2011;18(12):1121–6. doi:10.1038/gt.2011.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–38. doi:10.1038/nrd4359.

    Article  CAS  PubMed  Google Scholar 

  96. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotech. 2010;28(4):341–7. doi:http://www.nature.com/nbt/journal/v28/n4/abs/nbt.1618.html#supplementary-information.

Download references

Acknowledgments

The authors would especially like to thank Prof. Heike L. Rittner, Dr. Ann-Kristin Reinhold, Bahareh Mahrou, and Iman Bahreini for their outstanding editing and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Khanbabaei.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanbabaei, H., Teimoori, A. & Mohammadi, M. The interplay between microRNAs and Twist1 transcription factor: a systematic review. Tumor Biol. 37, 7007–7019 (2016). https://doi.org/10.1007/s13277-016-4960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4960-y

Keywords

Navigation