Tumor Biology

, Volume 37, Issue 8, pp 10553–10562 | Cite as

miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1

  • Ming Zhan
  • Xiaonan Zhao
  • Hui Wang
  • Wei Chen
  • Sunwang Xu
  • Wei Wang
  • Hui Shen
  • Shuai Huang
  • Jian Wang
Original Article


Gallbladder cancer (GBC) is the most common malignancy in biliary tract with poor prognosis. Due to its high chemoresistance, systemic chemotherapies have had limited success in treating GBC patients. MicroRNAs (miRNAs) are emerging novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. In this study, we investigated the association between miR-145 expression and cisplatin sensitivity by both in vivo and in vitro analysis. Quantitative PCR (q-PCR) analysis indicated an increased miR-145 expression in GBC tissues. In addition, studies on GBC cell lines suggested an increased cisplatin efficacy with miR-145 overexpression, whereas decreasing miR-145 expression reduced cisplatin sensitivity. Further, we found that miR-145 accelerated MRP1 mRNA degradation by directly targeting its 3′-UTR and therefore caused increased cisplatin toxicity in GBC cells. Moreover, lower miR-145 and higher MRP1 expression levels predicted poor prognosis in GBC patients who received chemotherapy. Collectively, our findings established a rationale for using miR-145 expression as a biomarker to identify cisplatin-resistant GBC patients and propose that treatment strategies increasing the expression of miR-145 could be a new therapeutic approach for GBC patients.


Gallbladder cancer miR-145 MRP1 Chemoresistance Cisplatin 



This work was supported by the National Science Foundation of China (81072011, 81272748, and 81472240), National Key Technology R&D Program (2012BAI06B01), Foundation of Science and Technology Commission of Shanghai Municipality (12XD1403400), and Foundation of Shanghai Municipal Health Bureau (XBR2011035).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Castro FA, Koshiol J, Hsing AW, Devesa SS. Biliary tract cancer incidence in the united states-demographic and temporal variations by anatomic site. Int J Cancer. 2013;133:1664–71.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med. 1999;341:1368–78.CrossRefPubMedGoogle Scholar
  3. 3.
    Misra S, Chaturvedi A, Misra NC, Sharma ID. Carcinoma of the gallbladder. Lancet Oncol. 2003;4:167–76.CrossRefPubMedGoogle Scholar
  4. 4.
    Lazcano-Ponce EC, Miquel JF, Munoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51:349–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology. 2008;135:1358–68. 1368 e1351-1354.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhan M, Wang H, Chen T, Chen W, Yang L, He M, et al. NOX1 mediates chemoresistance via HIF1alpha/MDR1 pathway in gallbladder cancer. Biochem Biophys Res Commun. 2015;468:79–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Srivastava AK, Han C, Zhao R, Cui T, Dai Y, Mao C, et al. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc Natl Acad Sci U S A. 2015;112:4411–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen Q, Li W, Wan Y, Xia X, Wu Q, Chen Y, et al. Amplified in breast cancer 1 enhances human cholangiocarcinoma growth and chemoresistance by simultaneous activation of Akt and Nrf2 pathways. Hepatology. 2012;55:1820–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sau A, Pellizzari Tregno F, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys. 2010;500:116–22.CrossRefPubMedGoogle Scholar
  10. 10.
    Li PL, Zhang X, Wang LL, Du LT, Yang YM, Li J, et al. MicroRNA-218 is a prognostic indicator in colorectal cancer and enhances 5-fluorouracil-induced apoptosis by targeting BIRC5. Carcinogenesis. 2015;36:1484–93.PubMedGoogle Scholar
  11. 11.
    Ge G, Zhou C, Ren Y, Tang X, Wang K, Zhang W, et al. Enhanced slc34a2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via slc34a2-bmi1-abcc5 signaling. Tumour Biol. 2015Google Scholar
  12. 12.
    Liang X, Xu X, Wang F, Li N, He J. E-cadherin increasing multidrug resistance protein 1 via hypoxia-inducible factor-1alpha contributes to multicellular resistance in colorectal cancer. Tumour Biol. 2015.Google Scholar
  13. 13.
    Wang Y, Liu L, Liu X, Zhang H, Liu J, Feng B, et al. Shugoshin1 enhances multidrug resistance of gastric cancer cells by regulating MRP1, Bcl-2, and Bax genes. Tumour Biol. 2013;34:2205–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee TC, Ho IC, Lu WJ, Huang JD. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line. J Biol Chem. 2006;281:18401–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Sicchieri RD, da Silveira WA, Mandarano LR, Goncalves de Oliveira TM, Carrara HH, Muglia VF, et al. Abcg2 is a potential marker of tumor-initiating cells in breast cancer. Tumour Biol. 2015.Google Scholar
  16. 16.
    Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86:631–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang W, Sun YP, Huang XZ, He M, Chen YY, Shi GY, et al. Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathion depletion and MRP1 downregulation. Biochem Pharmacol. 2010;79:1134–40.CrossRefPubMedGoogle Scholar
  18. 18.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Li Z, Yu X, Shen J, Jiang Y. MicroRNA dysregulation in uveal melanoma: a new player enters the game. Oncotarget. 2015;6:4562–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010;70:7027–30.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol. 2013;15:546–54.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sivadas VP, Kannan S. The microRNA networks of TGFbeta signaling in cancer. Tumour Biol. 2014;35:2857–69.CrossRefPubMedGoogle Scholar
  23. 23.
    Li Z, Yu X, Shen J, Law PT, Chan MT, Wu WK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 2015;6:13914–21.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou H, Guo W, Zhao Y, Wang Y, Zha R, Ding J, et al. MicroRNA-26a acts as a tumor suppressor inhibiting gallbladder cancer cell proliferation by directly targeting HMGA2. Int J Oncol. 2014;44:2050–8.PubMedGoogle Scholar
  25. 25.
    Jin K, Xiang Y, Tang J, Wu G, Li J, Xiao H, et al. miR-34 is associated with poor prognosis of patients with gallbladder cancer through regulating telomere length in tumor stem cells. Tumour Biol. 2014;35:1503–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Letelier P, Garcia P, Leal P, Alvarez H, Ili C, Lopez J, et al. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer. Int J Clin Exp Pathol. 2014;7:1849–67.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang X, Wu J. Prognostic role of microRNA-145 in prostate cancer: a systems review and meta-analysis. Prostate Int. 2015;3:71–4.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125:345–52.CrossRefPubMedGoogle Scholar
  29. 29.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol. 1989;24:148–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Li JH, Luo N, Zhong MZ, Xiao ZQ, Wang JX, Yao XY, et al. Inhibition of microrna-196a might reverse cisplatin resistance of a549/ddp non-small-cell lung cancer cell line. Tumour Biol. 2015.Google Scholar
  33. 33.
    Liu RL, Dong Y, Deng YZ, Wang WJ, Li WD. Tumor suppressor miR-145 reverses drug resistance by directly targeting DNA damage-related gene RAD18 in colorectal cancer. Tumour Biol. 2015;36:5011–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O’Leary JJ, et al. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One. 2012;7:e40717.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong RM, Miller KM, et al. Stromal expression of mir-143/145 promotes neoangiogenesis in lung cancer development. Cancer Discov. 2015.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Ming Zhan
    • 1
  • Xiaonan Zhao
    • 1
  • Hui Wang
    • 1
  • Wei Chen
    • 1
  • Sunwang Xu
    • 1
  • Wei Wang
    • 1
  • Hui Shen
    • 1
  • Shuai Huang
    • 1
  • Jian Wang
    • 1
  1. 1.Department of Biliary-Pancreatic Surgery, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations