Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 11375–11384 | Cite as

A comprehensive characterization of cell cultures and xenografts derived from a human verrucous penile carcinoma

  • Juan J. Muñoz
  • Sandra A. Drigo
  • Hellen Kuasne
  • Rolando A. R. Villacis
  • Fabio A. Marchi
  • Maria A. C. Domingues
  • Ademar Lopes
  • Tiago G. Santos
  • Silvia R. Rogatto
Original Article

Abstract

This study aimed to establish and characterize primary cell cultures and xenografts derived from penile carcinoma (PeCa) in order to provide experimental models for cellular processes and efficacy of new treatments. A verrucous squamous cell carcinoma (VSCC) was macrodissected, dissociated, and cultivated in KSFM/DF12 medium. Cell cultures were evaluated at passage 5 (P5) using migration and invasion assays and were serially propagated, in vivo, in BALB/c nude mice until passage 3 (X1–X3). Immunophenotypic characterization of cultures and xenografts was performed. Genomic (CytoScan HD, Affymetrix) and transcriptomic profiles (HTA 2.0 platform, Affymetrix) for VSCC, cell cultures, and xenografts were assessed. P5 cells were able to migrate, invade the Matrigel, and produce tumors in immunodeficient mice, demonstrating their malignant potential. The xenografts unexpectedly presented a sarcomatoid-like carcinoma phenotype. Genomic analysis revealed a high similarity between the VSCC and tumor-derived xenograft, confirming its xenograft origin. Interestingly, a subpopulation of P5 cells presented stem cell-related markers (CD44+CD24 and ALDH1high) and sphere-forming capacity, suggesting their potential xenograft origin. Cell cultures and xenografts retained the genomic alterations present in the parental tumor. Compared to VSCC, differentially expressed transcripts detected in all experimental conditions were associated with cellular morphology, movement, and metabolism and organization pathways. Malignant cell cultures and xenografts derived from a verrucous penile carcinoma were established and fully characterized. Nevertheless, xenograft PeCa models must be used with caution, taking into consideration the selection of specific cell populations and anatomical sites for cell/tumor implantation.

Keywords

Penile neoplasm Primary cell cultures Neoplasms Experimental disease models Mice 

Notes

Acknowledgments

The authors are grateful for the assistance given by MSc. Rainer Marco Lopes Lapa and Dr Vilma R Martins for the scientific support with the xenograft model.

Funding

This study was supported by grants from the National Council of Technological and Scientific Development (CNPq 573589/08-9) and São Paulo Research Foundation (FAPESP 2009/52088-3, 2010/51601-6, and 2009/14027-2).

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2016_4951_MOESM1_ESM.tif (945 kb)
Fig. S1 Schematic flow chart of the study design including the establishment and characterization of verrucous penile carcinoma cell cultures and xenografts. IHC: immunohistochemistry; P1-P5: cell culture passage from first to fifth (in vitro), X1, X2 and X3: xenograft in the first, second and third passages (in vivo). Immunophenotyping of xenograft cell cultures (X1, X2 and X3) was done (rectangle with dashed lines). (TIF 945 kb)
13277_2016_4951_MOESM2_ESM.doc (42 kb)
Table S1 Antibodies used for phenotypic characterization assays. (DOC 41 kb)
13277_2016_4951_MOESM3_ESM.doc (39 kb)
Table S2 Phenotypic characterization of cell cultures and xenografts. (DOC 39 kb)
13277_2016_4951_MOESM4_ESM.doc (106 kb)
Table S3 Genomic alterations detected in cell cultures (P1 and P5) and xenograft on passage 1 (X1) in comparison with the parental penile carcinoma (VSCC). (DOC 106 kb)
13277_2016_4951_MOESM5_ESM.doc (54 kb)
Table S4 Top 20 differentially expressed genes detected in cell cultures (P1 and P5) and xenografts (X1-X3) in comparison with the parental penile carcinoma (VSCC). (DOC 54 kb)

References

  1. 1.
    Chaux A, Lezcano C, Cubilla AL, Tamboli P, Ro J, Ayala A. Comparison of subtypes of penile squamous cell carcinoma from high and low incidence geographical regions. Int J Surg Pathol. 2010;18:268–77.CrossRefPubMedGoogle Scholar
  2. 2.
    Chaux A, Cubilla AL. Advances in the pathology of penile carcinomas. Hum Pathol. 2012;43:771–89.CrossRefPubMedGoogle Scholar
  3. 3.
    Wollina U, Steinbach F, Verma S, Tchernev G. Penile tumours: a review. J Eur Acad Dermatol Venereol. 2014;28:1267–76.CrossRefPubMedGoogle Scholar
  4. 4.
    Chaux A, Reuter V, Lezcano C, Velazquez EF, Torres J, Cubilla AL. Comparison of morphologic features and outcome of resected recurrent and nonrecurrent squamous cell carcinoma of the penis: a study of 81 cases. Am J Surg Pathol. 2009;33:1299–306.CrossRefPubMedGoogle Scholar
  5. 5.
    Louzada S, Adega F, Chaves R. Defining the sister rat mammary tumor cell lines HH-16 cl.2/1 and HH-16.cl.4 as an in vitro cell model for Erbb2. PLoS One. 2012;7:e29923.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012;14:R11.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 2006;66:3351–4.CrossRefPubMedGoogle Scholar
  8. 8.
    He Q, Wang X, Zhang X, Han H, Han B, Xu J, et al. A tissue-engineered subcutaneous pancreatic cancer model for antitumor drug evaluation. Int J Nanomed. 2013;8:1167–76.Google Scholar
  9. 9.
    Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, et al. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One. 2015;10:e0117417.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ishikawa S, Kanoh S, Nemoto S. Establishment of a cell line (TSUS-1) derived from a human squamous cell carcinoma of penis. Hinyokika Kiyo. 1983;29:373–6.PubMedGoogle Scholar
  11. 11.
    Tsukamoto T. Establishment and characterization of a cell line (KU-8) from squamous cell carcinoma of the penis. Keio J Med. 1989;38:277–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Gentile G, Giraldo G, Stabile M, Beth-Giraldo E, Lonardo F, Kyalwazi SK, et al. Cytogenetic study of a cell line of human penile cancer. Ann Genet. 1987;30:164–9.PubMedGoogle Scholar
  13. 13.
    Naumann CM, Sperveslage J, Hamann MF, Leuschner I, Weder L, Al-Najar AA, et al. Establishment and characterization of primary cell lines of squamous cell carcinoma of the penis and its metastasis. J Urol. 2012;187:2236–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Afonso LA, Moyses N, Alves G, Ornellas AA, Passos MR, Oliveira Ldo H, et al. Prevalence of human papillomavirus and Epstein-Barr virus DNA in penile cancer cases from Brazil. Mem Inst Oswaldo Cruz. 2012;107:18–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours (UICC International Union Against Cancer). 7th ed. Chicester: Wiley-Blackwell; 2009.Google Scholar
  16. 16.
    Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe. 1987;8:13840.Google Scholar
  17. 17.
    Dobner BC, Riechardt AI, Joussen AM, Englert S, Bechrakis NE. Expression of haematogenous and lymphogenous chemokine receptors and their ligands on uveal melanoma in association with liver metastasis. Acta Ophthalmol. 2012;90:e638–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Wei JH, Cao JZ, Zhang D, Liao B, Zhong WM, Lu J, et al. EIF5A2 predicts outcome in localized invasive bladder cancer and promotes bladder cancer cell aggressiveness in vitro and in vivo. Br J Cancer. 2014;110:1767–77.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Turin I, Schiavo R, Maestri M, Luinetti O, Dal Bello B, Paulli M, et al. In vitro efficient expansion of tumor cells deriving from different types of human tumor samples. Med Sci. 2014;2:70–81.Google Scholar
  20. 20.
    Croce MV, Colussi AG, Segal-Eiras A. Assessment of methods for primary tissue culture of human breast epithelia. J Exp Clin Cancer Res. 1998;17:19–26.PubMedGoogle Scholar
  21. 21.
    Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci U S A. 2000;97:7999–8004.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cree IA, Glaysher S, Harvey AL. Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue. Curr Opin Pharmacol. 2010;10:375–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.CrossRefPubMedGoogle Scholar
  25. 25.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A. Characterization of acute lymphoblastic leukemia progenitor cells. Blood. 2004;104:2919–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Clay MR, Tabor M, Owen JH, Carey TE, Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck. 2010;32:1195–201.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuasne H, Cólus IM, Busso AF, Hernandez-Vargas H, Barros-Filho MC, Marchi FA, et al. Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers. Clin Epigenetics. 2015;7:46.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15:311–6.CrossRefPubMedGoogle Scholar
  32. 32.
    EI-Awady RA, Hersi F, AI-Tunaiji H, Saleh EM, Abdel-Wahab AH, AI Homssi A, et al. Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy. Cancer Biol Ther. 2015;16:1056–70.CrossRefGoogle Scholar
  33. 33.
    Zheng Q, Ye J, Cao J. Translational regulator eIF2α in tumor. Tumour Biol. 2014;35:6255–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Xiang M, Namani A, Wu S, Wang X. Nrf2: bane or blessing in cancer? J Cancer Res Clin Oncol. 2014;140:1251–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Halliwell B. Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett. 2003;540:3–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Rotblat B, Melino G, Knight RA. NRF2 and p53: Januses in cancer? Oncotarget. 2012;3:1272–83.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Juan J. Muñoz
    • 1
    • 2
  • Sandra A. Drigo
    • 3
  • Hellen Kuasne
    • 1
    • 3
  • Rolando A. R. Villacis
    • 1
  • Fabio A. Marchi
    • 1
  • Maria A. C. Domingues
    • 4
  • Ademar Lopes
    • 5
  • Tiago G. Santos
    • 1
  • Silvia R. Rogatto
    • 1
    • 3
  1. 1.International Research Center—CIPE, A. C. Camargo Cancer CenterSão PauloBrazil
  2. 2.Genetic Graduation Program, Institute of Biosciences, São Paulo State University—UNESPBotucatuBrazil
  3. 3.NeoGene Laboratory, Department of UrologyMedical School, São Paulo State University—UNESPBotucatuBrazil
  4. 4.Department of Pathology, Medical SchoolSão Paulo State University—UNESPBotucatuBrazil
  5. 5.Department of Pelvic Surgery, A. C. Camargo Cancer CenterSão PauloBrazil

Personalised recommendations