Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 10533–10538 | Cite as

CLPTM1L polymorphism as a protective factor for lung cancer: a case–control study in southern Chinese population

  • Tianbo Jin
  • Bin Li
  • Na He
  • Yao Zhang
  • Ridong Xia
  • Longli Kang
  • Yipeng Ding
  • Dongya Yuan
Original Article
  • 176 Downloads

Abstract

Variants of the cleft lip and palate trans-membrane 1 like (CLPTM1L) gene, located on chromosome 5p15.33, were previously determined to influence lung cancer susceptibility. Here, we performed a case-control study to examine the potential association of CLPTM1L single nucleotide polymorphisms (SNPs) with lung cancer in a Chinese Han population. We selected four SNPs in the CLPTM1L gene that were previously reported to be associated with lung cancer. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated to estimate the strength of the relationship between each CLPTM1L SNP and lung cancer risk. Allelic model analysis revealed that the minor alleles of all four SNPs were significantly associated with decreased lung cancer risk. Similar significant results were detected using genetic model analysis. In addition, we observed a protective effect of haplotype “TT” in the CLPTM1L gene. Our results verified that certain CLPTM1L polymorphisms are protective factors against lung cancer in a southern Chinese Han population and may be potential diagnostic and molecular markers for lung cancer patients.

Keywords

Lung cancer Single nucleotide polymorphisms (SNPs) CLPTM1L Case-control study 

Notes

Acknowledgments

This work is supported by National Natural Science Foundations (No. 81560516), Major science and technology research projects of Xizang (Tibet) Autonomous Region (2015), Natural Science Foundation of Xizang (Tibet) Autonomous Region (20152R-13-11), and the Major Training Program of Xizang Minzu University (No. 13myZP06).

Compliance with ethical standards

Conflict of interest

The authors declare no competing interests.

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.CrossRefPubMedGoogle Scholar
  2. 2.
    Shields PG. Molecular epidemiology of smoking and lung cancer. Oncogene. 2002;21:6870–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang Y, Broderick P, Matakidou A, Eisen T, Houlston RS. Role of 5p15.33 (tert-clptm1l), 6p21.33 and 15q25.1 (chrna5-chrna3) variation and lung cancer risk in never-smokers. Carcinogenesis. 2010;31:234–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Seng KC, Seng CK. The success of the genome-wide association approach: a brief story of a long struggle. Eur J Hum Genet. 2008;16:554–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Pande M, Spitz MR, Wu X, Gorlov IP, Chen WV, Amos CI. Novel genetic variants in the chromosome 5p15.33 region associate with lung cancer risk. Carcinogenesis. 2011;32:1493–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40:1404–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40:1407–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet. 2009;85:679–91.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yamamoto K, Okamoto A, Isonishi S, Ochiai K, Ohtake Y. A novel gene, crr9, which was up-regulated in cddp-resistant ovarian tumor cell line, was associated with apoptosis. Biochem Biophys Res Commun. 2001;280:1148–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Ni Z, Tao K, Chen G, Chen Q, Tang J, Luo X, et al. Clptm1l is overexpressed in lung cancer and associated with apoptosis. PLoS One. 2012;7, e52598.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    James MA, Wen W, Wang Y, Byers LA, Heymach JV, Coombes KR, et al. Functional characterization of clptm1l as a lung cancer risk candidate gene in the 5p15.33 locus. PLoS One. 2012;7, e36116.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gabriel S, Ziaugra L, Tabbaa D. Snp genotyping using the sequenom massarray iplex platform. Current protocols in human genetics / editorial board, Jonathan L Haines [et al] 2009;Chapter 2:Unit 2.12.Google Scholar
  13. 13.
    Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39:347–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Adamec C. [example of the use of the nonparametric test. Test x2 for comparison of 2 independent examples]. Ceskoslovenske zdravotnictvi. 1964;12:613–9.PubMedGoogle Scholar
  15. 15.
    Bland JM, Altman DG. Statistics notes. The odds ratio. BMJ. 2000;320:1468.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shi YY, He L. Shesis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of ld and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Hawley ME, Kidd KK. Haplo: a program using the em algorithm to estimate the frequencies of multi-site haplotypes. J Hered. 1995;86:409–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in han chinese. Nat Genet. 2011;43:792–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the tert-clptm1l locus associate with many cancer types. Nat Genet. 2009;41:221–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kohno T, Kunitoh H, Shimada Y, Shiraishi K, Ishii Y, Goto K, et al. Individuals susceptible to lung adenocarcinoma defined by combined hla-dqa1 and tert genotypes. Carcinogenesis. 2010;31:834–41.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen XF, Cai S, Chen QG, Ni ZH, Tang JH, Xu DW, et al. Multiple variants of tert and clptm1l constitute risk factors for lung adenocarcinoma. Genet Mol Res. 2012;11:370–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Zienolddiny S, Skaug V, Landvik NE, Ryberg D, Phillips DH, Houlston R, et al. The tert-clptm1l lung cancer susceptibility variant associates with higher DNA adduct formation in the lung. Carcinogenesis. 2009;30:1368–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Wauters E, Smeets D, Coolen J, Verschakelen J, De Leyn P, Decramer M, et al. The tert-clptm1l locus for lung cancer predisposes to bronchial obstruction and emphysema. Eur Respir J. 2011;38:924–31.CrossRefPubMedGoogle Scholar
  25. 25.
    Bae EY, Lee SY, Kang BK, Lee EJ, Choi YY, Kang HG, et al. Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology. 2012;17:699–706.CrossRefPubMedGoogle Scholar
  26. 26.
    Shiraishi K, Kunitoh H, Daigo Y, Takahashi A, Goto K, Sakamoto H, et al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat Genet. 2012;44:900–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao Z, Li C, Yang L, Zhang X, Zhao X, Song X, et al. Significant association of 5p15.33 (tert-clptm1l genes) with lung cancer in chinese han population. Exp Lung Res. 2013;39:91–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Tang M, Bian X, Zhao Q. Clptm1l polymorphism and lung cancer risk. Int J Clin Exp Med. 2015;8:3895–900.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis. J Natl Cancer Inst. 2012;104:840–54.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Tianbo Jin
    • 1
    • 2
    • 3
  • Bin Li
    • 4
  • Na He
    • 1
    • 2
    • 3
  • Yao Zhang
    • 1
    • 2
    • 3
  • Ridong Xia
    • 1
    • 2
    • 3
  • Longli Kang
    • 1
    • 2
    • 3
  • Yipeng Ding
    • 5
  • Dongya Yuan
    • 1
    • 2
    • 3
  1. 1.Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu UniversityXianyangChina
  2. 2.Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu UniversityXianyangChina
  3. 3.Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu UniversityXianyangChina
  4. 4.Department of OncologyFirst Affiliated Hospital, Xi’an Medical UniversityXi’anChina
  5. 5.Department of Emergency, People’s Hospital of Hainan ProvinceHaikouChina

Personalised recommendations