Tumor Biology

, Volume 37, Issue 8, pp 10893–10907 | Cite as

Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation

  • Reza Mirzaei
  • Azad Saei
  • Fatemeh Torkashvand
  • Bahareh Azarian
  • Ahmad Jalili
  • Farshid Noorbakhsh
  • Behrouz Vaziri
  • Jamshid Hadjati
Original Article


Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that can promote antitumor immunity when pulsed with tumor antigens and then matured by stimulatory agents. Despite apparent progress in DC-based cancer immunotherapy, some discrepancies were reported in generating potent DCs. Listeria monocytogenes as an intracellular microorganism is able to effectively activate DCs through engaging pattern-recognition receptors (PRRs). This study aimed to find the most potent components derived from L. monocytogenes inducing DC maturation. The preliminary results demonstrated that the ability of protein components is higher than DNA components to promote DC maturation and activation. Protein lysate fractionation demonstrated that fraction 2 HIC (obtained by hydrophobic interaction chromatography) was able to efficiently mature DCs. F2HIC-matured DCs are able to induce allogeneic CD8+ T cells proliferation better than LPS-matured DCs and induce IFN-γ producing CD8+ T cells. Mass spectrometry results showed that F2HIC contains 109 proteins. Based on the bioinformatics analysis for these 109 proteins, elongation factor Tu (EF-Tu) could be considered as a PRR ligand for stimulating DC maturation.


Dendritic cell Elongation factor Tu Listeria monocytogenes Tumor 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.CrossRefPubMedGoogle Scholar
  2. 2.
    Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10:475–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–26.CrossRefPubMedGoogle Scholar
  4. 4.
    Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol. 2003;15:138–47.CrossRefPubMedGoogle Scholar
  5. 5.
    Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 2002;23:445–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Hilkens CM, Isaacs JD, Thomson AW. Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol. 2010;29:156–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Rutella S, Danese S, Leone G. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood. 2006;108:1435–40.CrossRefPubMedGoogle Scholar
  8. 8.
    Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of th1, th2 and nonpolarized t cells. Nat Immunol. 2000;1:311–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Kapsenberg ML. Dendritic-cell control of pathogen-driven t-cell polarization. Nat Rev Immunol. 2003;3:984–93.CrossRefPubMedGoogle Scholar
  10. 10.
    Reis e Sousa C. Dendritic cells as sensors of infection. Immunity. 2001;14:495–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Pamer EG. Immune responses to listeria monocytogenes. Nat Rev Immunol. 2004;4:812–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Khamisabadi M, Arab S, Motamedi M, Khansari N, Moazzeni SM, Gheflati Z, et al. Listeria monocytogenes activated dendritic cell based vaccine for prevention of experimental tumor in mice. Iran J Immunol. 2008;5:36–44.PubMedGoogle Scholar
  13. 13.
    Saei A, Boghozian R, Mirzaei R, Jamali A, Vaziri B, Hadjati J. Listeria monocytogenes protein fraction induces dendritic cells maturation and t helper 1 immune responses. Iran J Allergy Asthma Immunol. 2014;13:1–10.PubMedGoogle Scholar
  14. 14.
    Del Rio L, Butcher BA, Bennouna S, Hieny S, Sher A, Denkers EY. Toxoplasma gondii triggers myeloid differentiation factor 88-dependent il-12 and chemokine ligand 2 (monocyte chemoattractant protein 1) responses using distinct parasite molecules and host receptors. J Immunol. 2004;172:6954–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179:1109–18.CrossRefPubMedGoogle Scholar
  16. 16.
    Nourizadeh M, Masoumi F, Memarian A, Alimoghaddam K, Moazzeni SM, Yaghmaie M, et al. In vitro induction of potent tumor-specific cytotoxic t lymphocytes using tlr agonist-activated aml-dc. Target Oncol. 2014;9:225–37.CrossRefPubMedGoogle Scholar
  17. 17.
    Park MH, Yang DH, Kim MH, Jang JH, Jang YY, Lee YK, et al. Alpha-type 1 polarized dendritic cells loaded with apoptotic allogeneic breast cancer cells can induce potent cytotoxic t lymphocytes against breast cancer. Cancer Res Treat. 2011;43:56–66.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Keyvanshokooh S, Vaziri B, Gharaei A, Mahboudi F, Esmaili-Sari A, Shahriari-Moghadam M. Proteome modifications of juvenile beluga (huso huso) brain as an effect of dietary methylmercury. Comp Biochem Physiol Part D Genomics Proteomics. 2009;4:243–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Reza Mirzaei SA, Masoumeh Motamedi Motamedi, Afshin Amari, Jamshid Hadjati. The opposite effects of DNA and protein components of listeria monocytogenes and toxoplasma gondii on immunologic characteristics of dendritic cells. Iran J Allergy Asthma Immunol 2015;14(3):313–20.Google Scholar
  20. 20.
    Motamedi M, Arab S, Moazzeni SM, Khamis Abadi M, Hadjati J. Improvement of a dendritic cell-based therapeutic cancer vaccine with components of toxoplasma gondii. Clin Vaccine Immunol. 2009;16:1393–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pourgholaminejad A, Jamali A, Samadi-Foroushani M, Amari A, Mirzaei R, Ansaripour B, et al. Reduced efficacy of multiple doses of cpg-matured dendritic cell tumor vaccine in an experimental model. Cell Immunol. 2011;271:360–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH. Cutting edge: Cpg oligonucleotides induce splenic cd19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent t cell regulatory functions via ifn type 1 signaling. J Immunol. 2005;175:5601–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu YJ, et al. Human plasmacytoid dendritic cells activated by cpg oligodeoxynucleotides induce the generation of cd4+cd25+ regulatory t cells. J Immunol. 2004;173:4433–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoene V, Peiser M, Wanner R. Human monocyte-derived dendritic cells express tlr9 and react directly to the cpg-a oligonucleotide d19. J Leukoc Biol. 2006;80:1328–36.CrossRefPubMedGoogle Scholar
  25. 25.
    Hartmann G, Weiner GJ, Krieg AM. Cpg DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci U S A. 1999;96:9305–10.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194:863–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Re F, Strominger JL. Toll-like receptor 2 (tlr2) and tlr4 differentially activate human dendritic cells. J Biol Chem. 2001;276:37692–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Krab IM, Parmeggiani A. Ef-tu, a gtpase odyssey. Biochim Biophys Acta. 1998;1443:1–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Archambaud C, Gouin E, Pizarro-Cerda J, Cossart P, Dussurget O. Translation elongation factor ef-tu is a target for stp, a serine-threonine phosphatase involved in virulence of listeria monocytogenes. Mol Microbiol. 2005;56:383–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu H, Cheng Z, Song W, Wu W, Zhou Z. Immunoproteomic to analysis the pathogenicity factors in leukopenia caused by klebsiella pneumonia bacteremia. PLoS One. 2014;9:e110011.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bunk S, Susnea I, Rupp J, Summersgill JT, Maass M, Stegmann W, et al. Immunoproteomic identification and serological responses to novel chlamydia pneumoniae antigens that are associated with persistent c. Pneumoniae infections. J Immunol. 2008;180:5490–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Gupta MK, Subramanian V, Yadav JS. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of mycobacterium immunogenum, a newly recognized species of the mycobacterium chelonae-mycobacterium abscessus group. J Proteome Res. 2009;8:2319–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Harding SV, Sarkar-Tyson M, Smither SJ, Atkins TP, Oyston PC, Brown KA, et al. The identification of surface proteins of burkholderia pseudomallei. Vaccine. 2007;25:2664–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Nieves W, Heang J, Asakrah S, Honer zu Bentrup K, Roy CJ, Morici LA. Immunospecific responses to bacterial elongation factor tu during burkholderia infection and immunization. PLoS One. 2010;5, e14361.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sharma J, Mishra BB, Li Q, Teale JM. Tlr4-dependent activation of inflammatory cytokine response in macrophages by francisella elongation factor tu. Cell Immunol. 2011;269:69–73.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lopez JE, Beare PA, Heinzen RA, Norimine J, Lahmers KK, Palmer GH, et al. High-throughput identification of t-lymphocyte antigens from anaplasma marginale expressed using in vitro transcription and translation. J Immunol Methods. 2008;332:129–41.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Reza Mirzaei
    • 1
  • Azad Saei
    • 1
  • Fatemeh Torkashvand
    • 2
  • Bahareh Azarian
    • 2
  • Ahmad Jalili
    • 3
  • Farshid Noorbakhsh
    • 1
  • Behrouz Vaziri
    • 2
  • Jamshid Hadjati
    • 1
  1. 1.Immunology DepartmentSchool of Medicine, Tehran University of Medical SciencesTehranIran
  2. 2.Protein Chemistry Unit, Biotechnology Research Center, Pasteur Institute of IranTehranIran
  3. 3.Division of Immunology, Allergy and Infectious Diseases, Department of DermatologyMedical University of ViennaViennaAustria

Personalised recommendations