Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 10539–10544 | Cite as

Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel

  • Kan Chen
  • Wenjun Shi
Original Article

Abstract

Paclitaxel is a chemotherapeutic drug that is effective for treating non-small cell lung cancer (NSCLC). However, some NSCLCs are not sensitive to paclitaxel treatment with undetermined underlying molecular mechanisms. In this study, we found that paclitaxel dose-dependently activated Beclin-1 in 2 NSCLC cell lines, A549 and Calu-3. Inhibition of autophagy significantly increased the paclitaxel-induced NSCLC cell death in a cell counting kit-8 (CCK-8) assay. Moreover, microRNA (miR)-216b levels were significantly downregulated in paclitaxel-treated NSCLC cells. Bioinformatics study showed that miR-216b targeted the 3′-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that paclitaxel may decrease miR-216b levels in NSCLC cells, which subsequently upregulates Beclin-1 to increase NSCLC cell autophagy to antagonize paclitaxel-induced cell death. Strategies that increase miR-216b levels or inhibit cell autophagy may improve the outcome of paclitaxel treatment in NSCLC therapy.

Keywords

Non-small cell lung cancer (NSCLC) Paclitaxel Autophagy Beclin-1 miR-216b 

Notes

Compliance with Ethical Standards

Conflicts of interest

None

References

  1. 1.
    Caramori G, Casolari P, Cavallesco GN, Giuffre S, Adcock I, Papi A. Mechanisms involved in lung cancer development in COPD. Int J Biochem Cell Biol. 2011;43:1030–44.CrossRefPubMedGoogle Scholar
  2. 2.
    Buttery RC, Rintoul RC, Sethi T. Small cell lung cancer: the importance of the extracellular matrix. Int J Biochem Cell Biol. 2004;36:1154–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Weaver BA. How taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–81.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shen YA, Li WH, Chen PH, He CL, Chang YH, Chuang CM. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in taxol((r))-resistant ovarian cancer. Am J Transl Res. 2015;7:841–55.PubMedPubMedCentralGoogle Scholar
  6. 6.
    D'Antona L, Amato R, Talarico C, Ortuso F, Menniti M, Dattilo V, et al. SI113, a specific inhibitor of the Sgk1 kinase activity that counteracts cancer cell proliferation. Cell Physiol Biochem. 2015;35:2006–18.CrossRefPubMedGoogle Scholar
  7. 7.
    Yun M, Lee D, Park MN, Kim EO, Sohn EJ, Kwon BM, et al. Cinnamaldehyde derivative (CB-PIC) sensitizes chemo-resistant cancer cells to drug-induced apoptosis via suppression of MDR1 and its upstream STAT3 and AKT signalling. Cell Physiol Biochem. 2015;35:1821–30.CrossRefPubMedGoogle Scholar
  8. 8.
    He QZ, Luo XZ, Wang K, Zhou Q, Ao H, Yang Y, et al. Isolation and characterization of cancer stem cells from high-grade serous ovarian carcinomas. Cell Physiol Biochem. 2014;33:173–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell. 2014;157:65–75.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen Y, Liu H, Guan Y, Wang Q, Zhou F, Jie L, et al. The altered autophagy mediated by TFEB in animal and cell models of amyotrophic lateral sclerosis. Am J Transl Res. 2015;7:1574–87.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen J, Wang Q, Yin FQ, Zhang W, Yan LH, Li L. MTRR silencing inhibits growth and cisplatin resistance of ovarian carcinoma via inducing apoptosis and reducing autophagy. Am J Transl Res. 2015;7:1510–27.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nandi SS, Duryee MJ, Shahshahan HR, Thiele GM, Anderson DR, Mishra PK. Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am J Transl Res. 2015;7:683–96.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155:1216–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12:401–10.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Huang CY, Huang SP, Lin VC, Yu CC, Chang TY, Lu TL, et al. Genetic variants of the autophagy pathway as prognostic indicators for prostate cancer. Sci Rep. 2015;5:14045.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Farrow JM, Yang JC, Evans CP. Autophagy as a modulator and target in prostate cancer. Nat Rev Urol. 2014;11:508–16.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR, et al. Androgens promote prostate cancer cell growth through induction of autophagy. Mol Endocrinol. 2013;27:280–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Y, He W, Gao X, Li B, Mei C, Xu R, et al. Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep. 2015;5:17730.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhu X, Ruan Z, Yang X, Chu K, Wu H, Li Y, et al. Connexin 31.1 degradation requires the clathrin-mediated autophagy in NSCLC cell H1299. J Cell Mol Med. 2015;19:257–64.CrossRefPubMedGoogle Scholar
  21. 21.
    Bokobza SM, Jiang Y, Weber AM, Devery AM, Ryan AJ. Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells. Oncotarget. 2014;5:4765–78.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ali AB, Nin DS, Tam J, Khan M. Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells. PLoS One. 2011;6:e25268.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Di Leva G, Croce CM. MiRNA profiling of cancer. Curr Opin Genet Dev. 2013;23:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18:282–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Mei Q, Li F, Quan H, Liu Y, Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014;105:755–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu G, Jiang C, Li D, Wang R, Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014;35:9801–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Kim SY, Lee YH, Bae YS. Mir-186, mir-216b, mir-337-3p, and mir-760 cooperatively induce cellular senescence by targeting alpha subunit of protein kinase CKII in human colorectal cancer cells. Biochem Biophys Res Commun. 2012;429:173–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu FY, Zhou SJ, Deng YL, Zhang ZY, Zhang EL, Wu ZB, et al. MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death Dis. 2015;6:e1670.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Deng M, Tang H, Zhou Y, Zhou M, Xiong W, Zheng Y, et al. MiR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J Cell Sci. 2011;124:2997–3005.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang F, Ying HQ, He BS, Pan YQ, Deng QW, Sun HL, et al. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget. 2015;6:7899–917.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Fogh J, Fogh JM, Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977;59:221–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013;41:W159–64.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci U S A. 2005;102:8315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ahmed AA, Mills AD, Ibrahim AE, Temple J, Blenkiron C, Vias M, et al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel. Cancer Cell. 2007;12:514–27.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E, et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell. 2007;11:498–512.CrossRefPubMedGoogle Scholar
  38. 38.
    Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 2007;446:815–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Pusztai L. Markers predicting clinical benefit in breast cancer from microtubule-targeting agents. Ann Oncol. 2007;18 Suppl 12:xii15–20.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Thoracic SurgeryShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations