Skip to main content

Advertisement

Log in

Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer with an important role in castration-resistant stage. In the present work, we identified its impact in mechanisms leading to neuroendocrine (NE) transdifferentiation. We established for long-term PC-1 overexpression an inducible expression system derived from the prostate carcinoma cell line LNCaP. We observed that PC-1 overexpression itself initiates characteristics of neuroendocrine cells, but the effect was much more pronounced in the presence of the cytokine interleukin-6 (IL-6). Moreover, to our knowledge, this is the first report that treatment with IL-6 leads to a significant upregulation of PC-1 in LNCaP cells. Other TPD52 isoforms were not affected. Proceeding from this result, we conclude that PC-1 overexpression enhances the IL-6-mediated differentiation of LNCaP cells into a NE-like phenotype, noticeable by morphological changes and increased expression of typical NE markers, like chromogranin A, synaptophysin or beta-3 tubulin. Immunofluorescent staining of IL-6-treated PC-1-overexpressing LNCaP cells indicates a considerable PC-1 accumulation at the end of the long-branched neuron-like cell processes, which are typically formed by NE cells. Additionally, the experimentally initiated NE transdifferentiation correlates with the androgen receptor status, which was upregulated additively. In summary, our data provide evidence for an involvement of PC-1 in NE transdifferentiation, frequently associated with castration resistance, which is a major therapeutic challenge in the treatment of advanced prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Health report “Krebs in Deutschland 2009/2010, appeared 13.12.2013. Available from: http://www.rki.de/DE/Content/Gesundheitsmonitoring/Gesundheitsberichterstattung/GBEDownloadsB/KID2013.pdf?__blob=publicationFile.

  2. Byrne JA, Mattei MG, Basset P. Definition of the tumor protein D52 (TPD52) gene family through cloning of D52 homologues in human (hD53) and mouse (mD52). Genomics. 1996;35(3):523–32.

    Article  CAS  PubMed  Google Scholar 

  3. Byrne JA, et al. Identification of homo- and heteromeric interactions between members of the breast carcinoma-associated D52 protein family using the yeast two-hybrid system. Oncogene. 1998;16(7):873–81.

    Article  CAS  PubMed  Google Scholar 

  4. Byrne JA, et al. A screening method to identify genes commonly overexpressed in carcinomas and the identification of a novel complementary DNA sequence. Cancer Res. 1995;55(13):2896–903.

    CAS  PubMed  Google Scholar 

  5. Visakorpi T, et al. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 1995;55(2):342–7.

    CAS  PubMed  Google Scholar 

  6. Wang R, et al. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins. Biochem Biophys Res Commun. 2009;389(3):455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen SL, et al. Isolation and characterization of a novel gene expressed in multiple cancers. Oncogene. 1996;12(4):741–51.

    CAS  PubMed  Google Scholar 

  8. Wang R, et al. PrLZ, a novel prostate-specific and androgen-responsive gene of the TPD52 family, amplified in chromosome 8q21.1 and overexpressed in human prostate cancer. Cancer Res. 2004;64(5):1589–94.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, et al. PC-1/PrLZ contributes to malignant progression in prostate cancer. Cancer Res. 2007;67(18):8906–13.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas DD, et al. A role for tumor protein TPD52 phosphorylation in endo-membrane trafficking during cytokinesis. Biochem Biophys Res Commun. 2010;402(4):583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas DD, et al. CRHSP-28 regulates Ca(2+)-stimulated secretion in permeabilized acinar cells. J Biol Chem. 2001;276(31):28866–72.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas DD, Weng N, Groblewski GE. Secretagogue-induced translocation of CRHSP-28 within an early apical endosomal compartment in acinar cells. Am J Physiol Gastrointest Liver Physiol. 2004;287(1):G253–63.

    Article  CAS  PubMed  Google Scholar 

  13. Ummanni R, et al. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J. 2008;275(22):5703–13.

    Article  CAS  PubMed  Google Scholar 

  14. Li L, et al. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis. 2013;34(2):257–67.

    Article  PubMed  Google Scholar 

  15. Yu L, et al. PC-1/PrLZ confers resistance to rapamycin in prostate cancer cells through increased 4E-BP1 stability. Oncotarget. 2015;6(25):20356–69.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Edwards J, et al. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer. 2003;89(3):552–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee YF, et al. Activation of mitogen-activated protein kinase pathway by the antiandrogen hydroxyflutamide in androgen receptor-negative prostate cancer cells. Cancer Res. 2002;62(21):6039–44.

    CAS  PubMed  Google Scholar 

  18. Montgomery RB, et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 2008;68(11):4447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huss WJ, Gregory CW, Smith GJ. Neuroendocrine cell differentiation in the CWR22 human prostate cancer xenograft: association with tumor cell proliferation prior to recurrence. Prostate. 2004;60(2):91–7.

    Article  PubMed  Google Scholar 

  20. Jin RJ, et al. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res. 2004;64(15):5489–95.

    Article  CAS  PubMed  Google Scholar 

  21. Bonkhoff H. Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation, and androgen receptor status. Prostate Suppl. 1998;8:18–22.

    Article  CAS  PubMed  Google Scholar 

  22. Abrahamsson PA. Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer. 1999;6(4):503–19.

    Article  CAS  PubMed  Google Scholar 

  23. Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Prostate. 1999;39(2):135–48.

    Article  CAS  PubMed  Google Scholar 

  24. di Sant'Agnese PA, Cockett AT. Neuroendocrine differentiation in prostatic malignancy. Cancer. 1996;78(2):357–61.

    Article  PubMed  Google Scholar 

  25. Corcoran NM, Costello AJ. Interleukin-6: minor player or starring role in the development of hormone-refractory prostate cancer? BJU Int. 2003;91(6):545–53.

    Article  CAS  PubMed  Google Scholar 

  26. Drachenberg DE, et al. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate. 1999;41(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  27. Nakashima J, et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res. 2000;6(7):2702–6.

    CAS  PubMed  Google Scholar 

  28. Deeble PD, et al. Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol. 2001;21(24):8471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mori R, et al. Gene profiling and pathway analysis of neuroendocrine transdifferentiated prostate cancer cells. Prostate. 2009;69(1):12–23.

    Article  CAS  PubMed  Google Scholar 

  30. Hirano D, et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol. 2004;45(5):586–92. discussion 592.

    Article  CAS  PubMed  Google Scholar 

  31. Miyamoto H, Messing EM, Chang C. Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate. 2004;61(4):332–53.

    Article  CAS  PubMed  Google Scholar 

  32. Lottmann H, et al. The Tet-On system in transgenic mice: inhibition of the mouse pdx-1 gene activity by antisense RNA expression in pancreatic beta-cells. J Mol Med (Berl). 2001;79(5–6):321–8.

    Article  CAS  Google Scholar 

  33. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992;89(12):5547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li L, et al. PrLZ expression is associated with the progression of prostate cancer LNCaP cells. Mol Carcinog. 2009;48(5):432–40.

    Article  CAS  PubMed  Google Scholar 

  35. Ge D, et al. LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to IL-6-induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate. 2012;72(12):1306–16.

    Article  CAS  PubMed  Google Scholar 

  36. Marchiani S, et al. Androgen-responsive and -unresponsive prostate cancer cell lines respond differently to stimuli inducing neuroendocrine differentiation. Int J Androl. 2010;33(6):784–93.

    Article  CAS  PubMed  Google Scholar 

  37. Zelivianski S, et al. Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype. Biochim Biophys Acta. 2001;1539(1–2):28–43.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SO, et al. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression. Prostate. 2007;67(7):764–73.

    Article  CAS  PubMed  Google Scholar 

  39. Hobisch A, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58(20):4640–5.

    CAS  PubMed  Google Scholar 

  40. Wang J, et al. Identification and characterization of the novel human prostate cancer-specific PC-1 gene promoter. Biochem Biophys Res Commun. 2007;357(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang D, et al. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway. Cancer Res. 2011;71(6):2193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bonkhoff H, et al. Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate. 1991;19(2):91–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Robert Beyer and Sina Holstein for their contribution on experimental work. Special thanks go to Prof. Dr. Nicole Endlich (Department of Anatomy and Cell Biology, University Medicine Greifswald) for the opportunity to use microscopes for live cell imaging.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heike Junker or Reinhard Walther.

Ethics declarations

The manuscript does not contain clinical studies, animal studies or patient data.

Conflicts of interest

None

Additional information

Tom Moritz, Simone Venz and Heike Junker contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moritz, T., Venz, S., Junker, H. et al. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Tumor Biol. 37, 10435–10446 (2016). https://doi.org/10.1007/s13277-016-4925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4925-1

Keywords

Navigation