Tumor Biology

, Volume 37, Issue 8, pp 10609–10619 | Cite as

MicroRNA-130b promotes proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1α signaling

  • Rui-Min Chang
  • Jiang-Feng Xu
  • Feng Fang
  • Hao Yang
  • Lian-Yue Yang
Original Article


Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths owing to its high rate of postoperative recurrence and metastasis. New research is continuously identifying novel metastasis-associated oncogenes and tumor suppressor genes. miRNAs are noncoding RNAs that regulate protein synthesis post-translationally. miR-130b is one of several miRNAs involved in tumor metastasis. However, the role of miR-130b in HCC remains controversial. Here, we demonstrate that miR-130b is highly expressed in HCC and that it correlates with tumor number, vascular invasion, and TNM stage—important predictors of postoperative recurrence and metastases. Moreover, high levels of miR-130b predicted poor overall and disease-free survival of HCC patients, and in vitro and in vivo research revealed that knockdown or overexpression of miR-130b inhibited and promoted proliferation and metastasis of HCC cells, respectively. We identified PTEN as a direct functional target of miR-130b using miRNA databases and a dual luciferase report assay. Next, using a gain and loss assay and epithelial-mesenchymal transition (EMT) relative assays, we show that miR-130b may promote proliferation and EMT-induced metastasis via PTEN/p-AKT/HIF-1α signaling. Collectively, our data suggests that miR-130b may have prognostic value in HCC. Additionally, the miR-130b/PTEN/p-AKT/HIF-1α axis identified in this study provides novel insight into the mechanisms of HCC metastasis, which may facilitate the development of new therapeutics against HCC.


Solitary large hepatocellular carcinoma miR-130b Prognosis EMT PTEN 



Hepatocellular carcinoma


Solitary large hepatocellular carcinoma


Small hepatocellular carcinoma


Nodular hepatocellular carcinoma


Adjacent nontumorous liver tissues




3′ Untranslated region


Messenger RNA


Quantitative reverse-transcription polymerase chain reaction


Phosphatase and tensin homolog


Compliance with ethical standards


This study was funded by Clinical Subjects’ Key Project of Ministry of Health (No. 2010439), National Science & Technology Major Projects (2009ZX09103-681, 2012ZX100020122011), National Nature Science Foundation of China (No. 81272395), Key Project of National Nature Science Foundation of China (No. 81330057), and The Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20130162130007).

Conflicts of interest


Ethical standards

Prior informed consent was obtained from all patients and the study was approved by the Ethics Committee of Xiangya Hospital of CSU.

Supplementary material

13277_2016_4919_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 30 kb)
13277_2016_4919_MOESM2_ESM.docx (31 kb)
Supplementary Table 1 (DOCX 30 kb)
13277_2016_4919_Fig6_ESM.gif (97 kb)
Supplementary Figure 1

Flow diagram of patients included in study. (GIF 97 kb)

13277_2016_4919_MOESM3_ESM.tif (474 kb)
High resolution image (TIF 474 kb)
13277_2016_4919_Fig7_ESM.gif (213 kb)
Supplementary Figure 2

The infection efficiency of miR-130b expression lentivirus or anti-miR-130b lentivirus in HepG2 (a) and HCCLM3 cells (b). (GIF 212 kb)

13277_2016_4919_MOESM4_ESM.tif (2.5 mb)
High resolution image (TIF 2516 kb)
13277_2016_4919_Fig8_ESM.gif (74 kb)
Supplementary Figure 3

Representative immunofluorescence images of the cellular morphology of HCC cells infected with miR-130b. Cytoskeleton and cell nuclei were stained with TRITC Phalloidin and DAPI, respectively. Original magnification × 400. (GIF 74 kb)

13277_2016_4919_MOESM5_ESM.tif (1010 kb)
High resolution image (TIF 1010 kb)
13277_2016_4919_Fig9_ESM.gif (97 kb)
Supplementary Figure 4

miR-130b promote EMT of hepatocellular carcinoma through AKT/HIF1-α signaling. Immunohistochemistry of p-AKT, AKT, HIF1-α, Snail, N-cadherin, E-cadherin, and vimentin in HCC tissue with differential miR-130b expression (a) and in the HCC metastatic mouse model constructed by using HepG2NC,, HepG2miR-130b, HCCLM3NC and HCCLM3Anti-miR-130b cells (b). (GIF 570 kb)

13277_2016_4919_MOESM6_ESM.tif (8 mb)
High resolution image (TIF 8152 kb)
13277_2016_4919_Fig10_ESM.gif (213 kb)
Supplementary Figure 5

(a) PPAR-γ and TP53INP1 expression in HCC cell lines with different miR-130b expression. (b) PPAR-γ expression in HCC cell lines transfected with PTEN vector or PTEN-shRNA vector10. (GIF 47 kb)

13277_2016_4919_MOESM7_ESM.tif (562 kb)
High resolution image (TIF 561 kb)
13277_2016_4919_Fig11_ESM.gif (74 kb)
Supplementary Figure 6

A schematic and simplified representation of the role and mechanism of miR-130b in HCC progression. (GIF 77 kb)

13277_2016_4919_MOESM8_ESM.tif (754 kb)
High resolution image (TIF 753 kb)


  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.Google Scholar
  2. 2.
    Otto G, Schuchmann M, Hoppe-Lotichius M, Heise M, Weinmann A, Hansen T, et al. How to decide about liver transplantation in patients with hepatocellular carcinoma: size and number of lesions or response to TACE? J Hepatol. 2013;59(2):279–84. doi: 10.1016/j.jhep.2013.04.006.CrossRefPubMedGoogle Scholar
  3. 3.
    Yang LY, Chang RM, Lau WY, Ou DP, Wu W, Zeng ZJ. Mesohepatectomy for centrally located large hepatocellular carcinoma: indications, techniques, and outcomes. Surgery. 2014;156(5):1177–87. doi: 10.1016/j.surg.2014.05.012.CrossRefPubMedGoogle Scholar
  4. 4.
    Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013;57(2):840–7. doi: 10.1002/hep.26095.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang ZC, Gao Q, Shi JY, Guo WJ, Yang LX, Liu XY, et al. PTPRS acts as a metastatic suppressor in hepatocellular carcinoma by control of EGFR induced epithelial-mesenchymal transition. Hepatology. 2015. doi: 10.1002/hep.27911.Google Scholar
  6. 6.
    Tang B, Qi G, Tang F, Yuan S, Wang Z, Liang X, Li B, Yu S, Liu J, Huang Q, Wei Y, Zhai R, Lei B, Yu H, Jiao X, He S. JARID1B promotes metastasis and epithelial-mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells. Oncotarget. 2015;6(14):12723-12739. doi: 10.18632/oncotarget.3713
  7. 7.
    Huang W, Chen Z, Shang X, Tian D, Wang D, Wu K, et al. Sox12, a direct target of FoxQ1, promotes hepatocellular carcinoma metastasis through up-regulating Twist1 and FGFBP1. Hepatology. 2015;61(6):1920–33. doi: 10.1002/hep.27756.CrossRefPubMedGoogle Scholar
  8. 8.
    Bu P, Wang L, Chen KY, Rakhilin N, Sun J, Closa A, et al. miR-1269 promotes metastasis and forms a positive feedback loop with TGF-beta. Nat Commun. 2015;6:6879. doi: 10.1038/ncomms7879.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chuang KH, Whitney-Miller CL, Chu CY, Zhou Z, Dokus MK, Schmit S, et al. MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology. 2015. doi: 10.1002/hep.27816.PubMedCentralGoogle Scholar
  10. 10.
    Zhang J, Yang Y, Yang T, Yuan S, Wang R, Pan Z, et al. Double-negative feedback loop between microRNA-422a and forkhead box (FOX)G1/Q1/E1 regulates hepatocellular carcinoma tumor growth and metastasis. Hepatology. 2015;61(2):561–73. doi: 10.1002/hep.27491.CrossRefPubMedGoogle Scholar
  11. 11.
    Parpart S, Roessler S, Dong F, Rao V, Takai A, Ji J, et al. Modulation of miR-29 expression by alpha-fetoprotein is linked to the hepatocellular carcinoma epigenome. Hepatology. 2014;60(3):872–83. doi: 10.1002/hep.27200.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, et al. MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology. 2014;59(5):1874–85. doi: 10.1002/hep.26941.CrossRefPubMedGoogle Scholar
  13. 13.
    Fang F, Chang RM, Yu L, Lei X, Xiao S, Yang H, et al. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma. J Hepatol. 2015. doi: 10.1016/j.jhep.2015.05.008.Google Scholar
  14. 14.
    Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology. 2013;58(1):205–17. doi: 10.1002/hep.26315.CrossRefPubMedGoogle Scholar
  15. 15.
    Chang RM, Yang H, Fang F, Xu JF, Yang LY. MicroRNA-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase. Hepatology. 2014;60(4):1251–63. doi: 10.1002/hep.27221.CrossRefPubMedGoogle Scholar
  16. 16.
    Tu K, Zheng X, Dou C, Li C, Yang W, Yao Y, et al. MicroRNA-130b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. Int J Mol Sci. 2014;15(11):20486–99. doi: 10.3390/ijms151120486.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lin YH, Wu MH, Liao CJ, Huang YH, Chi HC, Wu SM, et al. Repression of microRNA-130b by thyroid hormone enhances cell motility. J Hepatol. 2015;62(6):1328–40. doi: 10.1016/j.jhep.2014.12.035.CrossRefPubMedGoogle Scholar
  18. 18.
    Lai KW, Koh KX, Loh M, Tada K, Subramaniam MM, Lim XY, et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur J Cancer. 2010;46(8):1456–63. doi: 10.1016/j.ejca.2010.01.036.CrossRefPubMedGoogle Scholar
  19. 19.
    Yang C, Cai J, Wang Q, Tang H, Cao J, Wu L, et al. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol Oncol. 2012;124(2):325–34. doi: 10.1016/j.ygyno.2011.10.013.CrossRefPubMedGoogle Scholar
  20. 20.
    Li BL, Lu C, Lu W, Yang TT, Qu J, Hong X, et al. miR-130b is an EMT-related microRNA that targets DICER1 for aggression in endometrial cancer. Med Oncol. 2013;30(1):484. doi: 10.1007/s12032-013-0484-0.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao G, Zhang JG, Shi Y, Qin Q, Liu Y, Wang B, et al. MiR-130b is a prognostic marker and inhibits cell proliferation and invasion in pancreatic cancer through targeting STAT3. PLoS One. 2013;8(9):e73803. doi: 10.1371/journal.pone.0073803.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen Q, Zhao X, Zhang H, Yuan H, Zhu M, Sun Q, et al. MiR-130b suppresses prostate cancer metastasis through down-regulation of MMP2. Mol Carcinog. 2014. doi: 10.1002/mc.22204.Google Scholar
  23. 23.
    Yu T, Cao R, Li S, Fu M, Ren L, Chen W, et al. MiR-130b plays an oncogenic role by repressing PTEN expression in esophageal squamous cell carcinoma cells. BMC Cancer. 2015;15:29. doi: 10.1186/s12885-015-1031-5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. PLoS Med. 2012;9(5):e1001216. doi: 10.1371/journal.pmed.1001216.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang LY, Fang F, Ou DP, Wu W, Zeng ZJ, Wu F. Solitary large hepatocellular carcinoma: a specific subtype of hepatocellular carcinoma with good outcome after hepatic resection. Ann Surg. 2009;249(1):118–23. doi: 10.1097/SLA.0b013e3181904988.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang W, Yang LY, Huang GW, Lu WQ, Yang ZL, Yang JQ, et al. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer. 2004;90(12):2349–55. doi: 10.1038/sj.bjc.6601749.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Xia H, Jianxiang C, Shi M, Gao H, Karthik S, Pratap SV, et al. EDIL3 is a novel regulator of epithelial mesenchymal transition controlling early recurrence of hepatocellular carcinoma. J Hepatol. 2015. doi: 10.1016/j.jhep.2015.05.005.Google Scholar
  28. 28.
    Tang B, Qi G, Tang F, Yuan S, Wang Z, Liang X, et al. JARID1B promotes metastasis and epithelial-mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells. Oncotarget. 2015;6(14):12723–39.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hall DP, Cost NG, Hegde S, Kellner E, Mikhaylova O, Stratton Y, et al. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma. Cancer Cell. 2014;26(5):738–53. doi: 10.1016/j.ccell.2014.09.015.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N, et al. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 2008;68(21):8976–85. doi: 10.1158/0008-5472.CAN-08-0769.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang WY, Zhang HF, Wang L, Ma YP, Gao F, Zhang SJ, et al. High expression of microRNA-130b correlates with poor prognosis of patients with hepatocellular carcinoma. Diagn Pathol. 2014;9:160. doi: 10.1186/s13000-014-0160-5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ma S, Tang KH, Chan YP, Lee TK, Kwan PS, Castilho A, et al. miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7(6):694–707. doi: 10.1016/j.stem.2010.11.010.CrossRefPubMedGoogle Scholar
  33. 33.
    Colangelo T, Fucci A, Votino C, Sabatino L, Pancione M, Laudanna C, et al. MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia. 2013;15(10):1218–31.PubMedCentralGoogle Scholar
  34. 34.
    Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, et al. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell. 2014;158(1):171–84. doi: 10.1016/j.cell.2014.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139(19):3471–86. doi: 10.1242/dev.071209.CrossRefPubMedGoogle Scholar
  36. 36.
    Tian H, Ge C, Li H, Zhao F, Hou H, Chen T, et al. Ribonucleotide reductase M2B inhibits cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/Akt1 pathway in hepatocellular carcinoma. Hepatology. 2014;59(4):1459–70. doi: 10.1002/hep.26929.CrossRefPubMedGoogle Scholar
  37. 37.
    Du R, Wu S, Lv X, Fang H, Wu S, Kang J. Overexpression of brachyury contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. J Exp Clin Cancer Res : CR. 2014;33(1):105. doi: 10.1186/s13046-014-0105-6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Rui-Min Chang
    • 1
  • Jiang-Feng Xu
    • 1
  • Feng Fang
    • 1
  • Hao Yang
    • 1
  • Lian-Yue Yang
    • 1
    • 2
  1. 1.Liver Cancer Laboratory, Department of Surgery, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Liver Cancer Laboratory, Department of SurgeryXiangya HospitalChangshaChina

Personalised recommendations