Tumor Biology

, Volume 37, Issue 8, pp 10633–10641 | Cite as

UCA1 functions as a competing endogenous RNA to suppress epithelial ovarian cancer metastasis

  • Yijun Yang
  • Yi Jiang
  • Yicong Wan
  • Lin Zhang
  • Jiangnan Qiu
  • Shulin Zhou
  • Wenjun Cheng
Original Article

Abstract

Urothelial cancer associated 1 (UCA1) is an example of functional long noncoding RNAs involved in many biologic processes. However, little is known about the association between UCA1 expression and metastasis in epithelial ovarian cancer (EOC). Findings of this study confirmed that not only UCA1 was aberrantly upregulated in EOC tissues and cells, but also correlated with status of lymph node metastasis and FIGO stage. Furthermore, univariate and multivariate analyses showed that UCA1 was a prognostic factor for overall survival in EOC patients. In vitro, knockdown of UCA1 reduced the invasion and migration ability of EOC cells. The results showed that UCA1 could function as an endogenous sponge by directly binding to miR-485-5p. Depletion of UCA1 was involved in the downregulation of matrix metallopeptidase 14 (MMP14) expression, a target gene of miR-485-5p. In conclusion, our work indicates that UCA1 is a new prognostic biomarker for EOC, establishing a novel connection among UCA1, miR-485-5p, and MMP14 in EOC metastasis.

Keywords

Epithelial ovarian cancer (EOC) LncRNA-UCA1 Competing endogenous RNA MMP14 

Notes

Acknowledgments

We thank Dr. Jinsong Liu (University of Texas M.D. Anderson Cancer Center) for revising the manuscript carefully. This work was supported by the National Nature Science Foundation of China (81472442, 81272871), Jiangsu Province Medical Key Talent Grant (2011).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.CrossRefPubMedGoogle Scholar
  2. 2.
    Bast Jr RC, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009;9(6):415–28. doi: 10.1038/nrc2644.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bowtell DDL. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer. 2010;10(11):803–8. doi: 10.1038/nrc2946.CrossRefPubMedGoogle Scholar
  4. 4.
    Rustin G, van der Burg M, Griffin C, Qian W, Swart AM. Early versus delayed treatment of relapsed ovarian cancer. Lancet. 2011;377(9763):380–1. doi: 10.1016/s0140-6736(11)60126-8.CrossRefPubMedGoogle Scholar
  5. 5.
    Tsai M-C, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71(1):3–7. doi: 10.1158/0008-5472.can-10-2483.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huang J-L, Zheng L, Hu Y-W, Wang Q. Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis. 2014;35(3):507–14. doi: 10.1093/carcin/bgt405.CrossRefPubMedGoogle Scholar
  7. 7.
    Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. doi: 10.1038/nrg3606.CrossRefPubMedGoogle Scholar
  8. 8.
    J-j Q, Lin Y-y, L-c Y, J-x D, W-w F, H-y J, et al. Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 2014;134(1):121–8. doi: 10.1016/j.ygyno.2014.03.556.CrossRefGoogle Scholar
  9. 9.
    Sheng X, Li J, Yang L, Chen Z, Zhao Q, Tan L, et al. Promoter hypermethylation influences the suppressive role of maternally expressed 3, a long non-coding RNA, in the development of epithelial ovarian cancer. Oncol Rep. 2014;32(1):277–85. doi: 10.3892/or.2014.3208.PubMedGoogle Scholar
  10. 10.
    Qiu J-J, Lin Y-Y, Ding J-X, Feng W-W, Jin H-Y, Hua K-Q. Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. Int J Oncol. 2015;46(6):2497–505. doi: 10.3892/ijo.2015.2943.PubMedGoogle Scholar
  11. 11.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69. doi: 10.1016/j.cell.2011.09.028.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kallen AN, Zhou X-B, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted H19 LncRNA antagonizes Let-7 MicroRNAs. Mol Cell. 2013;52(1):101–12. doi: 10.1016/j.molcel.2013.08.027.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5:3596. doi: 10.1038/ncomms4596.PubMedGoogle Scholar
  14. 14.
    Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919–27. doi: 10.1016/j.febslet.2008.05.012.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang T, Yuan J, Feng N, Li Y, Lin Z, Jiang Z, et al. Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer. Tumor Biol. 2014;35(10):10075–84. doi: 10.1007/s13277-014-2321-2.CrossRefGoogle Scholar
  16. 16.
    Li Z, Li X, Wu S, Xue M, Chen W. Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 2014;105(8):951–5. doi: 10.1111/cas.12461.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang F, Zhou J, Xie X, Hu J, Chen L, Hu Q, et al. Involvement of SRPK1 in cisplatin resistance related to long non-coding RNA UCA1 in human ovarian cancer cells. Neoplasma. 2015;62(3):432–8. doi: 10.4149/neo_2015_051.CrossRefPubMedGoogle Scholar
  18. 18.
    Fu WM, Zhu X, Wang WM, Lu YF, Hu BG, Wang H, et al. Hotair mediates hepatocarcinogenesis through suppressing miRNA-218 expression and activating P14 and P16 signaling. J Hepatol. 2015;63(4):886–95. doi: 10.1016/j.jhep.2015.05.016.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim TH, Kim YK, Kwon Y, Heo JH, Kang H, Kim G, et al. Deregulation of miR-519a, 153, and 485-5p and its clinicopathological relevance in ovarian epithelial tumours. Histopathology. 2010;57(5):734–43. doi: 10.1111/j.1365-2559.2010.03686.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Izaurralde E. Elucidating the temporal order of silencing. EMBO Rep. 2012;13(8):662–3. doi: 10.1038/embor.2012.91.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14. doi: 10.1038/nrg2290.CrossRefPubMedGoogle Scholar
  22. 22.
    Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40. doi: 10.1016/j.cell.2005.10.022.CrossRefPubMedGoogle Scholar
  23. 23.
    X-h L, Sun M, Nie F-q, Ge Y-b, Zhang E-b, Yin D-d, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92. doi: 10.1186/1476-4598-13-92.CrossRefGoogle Scholar
  24. 24.
    Wang F, Ying H-Q, He B-S, Pan Y-Q, Deng Q-W, Sun H-L, et al. Upregulated IncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget. 2015;6(10):7899–917.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 2014;5:e1008. doi: 10.1038/cddis.2013.541.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    H-m Z, Yang F-q, Chen S-J, Che J, Zheng J-h. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumor Biol. 2015;36(4):2947–55. doi: 10.1007/s13277-014-2925-6.CrossRefGoogle Scholar
  27. 27.
    Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. Plos Genet. 2013;9(3):e1003368. doi: 10.1371/journal.pgen.1003368.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pang E-J, Yang R, Fu X-b, Liu Y-f. Overexpression of long non-coding RNA MALAT1 is correlated with clinical progression and unfavorable prognosis in pancreatic cancer. Tumor Biol. 2015;36(4):2403–7. doi: 10.1007/s13277-014-2850-8.CrossRefGoogle Scholar
  29. 29.
    Anaya-Ruiz M, Bandala C, Perez-Santos JL. miR-485 acts as a tumor suppressor by inhibiting cell growth and migration in breast carcinoma T47D cells. Asian Pac J Cancer Prev. 2013;14(6):3757–60.CrossRefPubMedGoogle Scholar
  30. 30.
    He N, Zheng H, Li P, Zhao Y, Zhang W, Song F, et al. miR-485-5p binding site SNP rs8752 in HPGD gene is associated with breast cancer risk. PLoS One. 2014;9(7):e102093. doi: 10.1371/journal.pone.0102093.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pahwa S, Stawikowski MJ, Fields GB. Monitoring and inhibiting MT1-MMP during cancer initiation and progression. Cancers. 2014;6(1):416–35. doi: 10.3390/cancers6010416.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jo Y, Yeon J, Kim HJ, Lee ST. Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system. Biochem J. 2000;345(Pt 3):511–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang Y-z, Wu K-p, Wu A-b, Yang Z-c, J-m L, Y-l M, et al. MMP-14 overexpression correlates with poor prognosis in non-small cell lung cancer. Tumor Biol. 2014;35(10):9815–21. doi: 10.1007/s13277-014-2237-x.CrossRefGoogle Scholar
  34. 34.
    Udayakumar TS, Chen ML, Bair EL, von Bredow DC, Cress AE, Nagle RB, et al. Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta 3 chain and induces cell migration. Cancer Res. 2003;63(9):2292–9.PubMedGoogle Scholar
  35. 35.
    Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M. Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer. 2003;106(6):848–55. doi: 10.1002/ijc.11313.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang L, Yuan J, Tu Y, Mao X, He S, Fu G, et al. Co-expression of MMP-14 and MMP-19 predicts poor survival in human glioma. Clin Transl Oncol. 2013;15(2):139–45. doi: 10.1007/s12094-012-0900-5.CrossRefPubMedGoogle Scholar
  37. 37.
    Albrechtsen R, Kveiborg M, Stautz D, Vikesa J, Noer JB, Kotzsh A, et al. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis and increased tumor growth. J Cell Sci. 2013;126(Pt 20):4707–20. doi: 10.1242/jcs.129510.CrossRefPubMedGoogle Scholar
  38. 38.
    Yang C, Li X, Wang Y, Zhao L, Chen W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through P13-K dependent pathway in bladder carcinoma cells. Gene. 2012;496(1):8–16. doi: 10.1016/j.gene.2012.01.012.CrossRefPubMedGoogle Scholar
  39. 39.
    Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–54. doi: 10.1016/s1672-0229(08)60044-3.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Yijun Yang
    • 1
  • Yi Jiang
    • 1
  • Yicong Wan
    • 1
  • Lin Zhang
    • 2
  • Jiangnan Qiu
    • 1
  • Shulin Zhou
    • 1
  • Wenjun Cheng
    • 1
  1. 1.Department of GynecologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of Obstetrics and GynecologyZhongda Hospital Affiliated to Southeast University, Medical School, Southeast UniversityNanjingChina

Personalised recommendations