Tumor Biology

, Volume 37, Issue 8, pp 11177–11186 | Cite as

miRNA-204 suppresses human non-small cell lung cancer by targeting ATF2

  • Shuo Zhang
  • Lei Gao
  • Asmitananda Thakur
  • Puyu Shi
  • Feng Liu
  • Jing Feng
  • Ting Wang
  • Yiqian Liang
  • Johnson J. Liu
  • Mingwei Chen
  • Hui Ren
Original Article

Abstract

MicroRNAs (miRNAs) play a critical role in cancer development and progression. Deregulated expression of miR-204 has been reported in several cancers, but the mechanism through which miR-204 modulates human non-small cell lung cancer (NSCLC) is largely unknown. In this study, we investigate the expression and functional role of miR-204 in human NSCLC tissues and cell lines. RNA isolation, qRT-PCR, MTT, colony formation assay, cell cycle assay, cell apoptosis assay, cell migration assay, and Western blot were performed. Statistical analysis was performed using SPSS 18.0 software and statistical significance was accepted at p value <0.05. miR-204 level was significantly reduced in NSCLC tissues as compared to that of non-neoplastic tissues. Transient over-expression of miR-204 by transfecting with miR-204 mimics suppressed NSCLC cell proliferation, migration, and induced apoptosis and G1 arrest, whereas inhibition of miR-204 showed the converse effects. Additionally, activating transcription factor 2 (ATF2), an important transcription factor, was demonstrated as a potential target gene of miR-204. Subsequent investigations found a negative correlation between miR-204 level and ATF2 expression in NSCLC tissue samples. Moreover, we observed that miR-204 expression inversely affected endogenous ATF2 expression at both mRNA and protein levels in vitro. Taken together, miR-204 may act as a tumor suppressor by directly targeting ATF2 in NSCLC.

Keywords

NSCLC miR-204 Apoptosis Migration ATF2 

Notes

Acknowledgments

This research was supported by a grant from the National Natural Science Foundation of P. R. China (no. 81302029), Natural Science Foundation of Shaanxi Province of P. R. China (no. 2014JQ4149), Fundamental Research Funds for the Central Universities in Xi’an Jiaotong University (no. xjj2015086), and China Postdoctoral Science Foundation (no. 2015M570841).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.CrossRefPubMedGoogle Scholar
  3. 3.
    She J, Yang P, Hong Q, Bai C. Lung cancer in China: challenges and interventions. Chest. 2013;143(4):1117–26. doi: 10.1378/chest.11-2948.CrossRefPubMedGoogle Scholar
  4. 4.
    Rivera MP. Multimodality therapy in the treatment of lung cancer. Semin Respir Crit Care Med. 2004;25 Suppl 1:3–10. doi: 10.1055/s-2004-829639.CrossRefPubMedGoogle Scholar
  5. 5.
    Palanichamy JK, Rao DS. miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet. 2014;5:54. doi: 10.3389/fgene.2014.00054.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther. 2014;15(11):1444–55. doi: 10.4161/15384047.2014.955442.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li J, Wang Q, Wen R, Liang J, Zhong X, Yang W, et al. MiR-138 inhibits cell proliferation and reverses epithelial-mesenchymal transition in non-small cell lung cancer cells by targeting GIT1 and SEMA4C. J Cell Mol Med. 2015. doi: 10.1111/jcmm.12666.Google Scholar
  8. 8.
    Sun JB, Ji JH, Huo GX, Song QL, Zhang X. miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol. 2015;8(5):4755–63.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Ho CS, Yap SH, Phuah NH, In LL, Hasima N. MicroRNAs associated with tumour migration, invasion and angiogenic properties in A549 and SK-Lu1 human lung adenocarcinoma cells. Lung Cancer. 2014;83(2):154–62. doi: 10.1016/j.lungcan.2013.11.024.CrossRefPubMedGoogle Scholar
  10. 10.
    Yoo JK, Jung HY, Lee JM, Yi H, Oh SH, Ko HY, et al. The novel miR-9500 regulates the proliferation and migration of human lung cancer cells by targeting Akt1. Cell Death Differ. 2014;21(7):1150–9. doi: 10.1038/cdd.2014.33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Madison BB, Jeganathan AN, Mizuno R, Winslow MM, Castells A, Cuatrecasas M, et al. Let-7 represses carcinogenesis and a stem cell phenotype in the intestine via regulation of Hmga2. PLoS Genet. 2015;11(8):e1005408. doi: 10.1371/journal.pgen.1005408.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang XL, Qiu WX, Zhang GQ, Xu SJ, Gao Q, Yang ZL. MicroRNA-204 targets JAK2 in breast cancer and induces cell apoptosis through the STAT3/BCl-2/survivin pathway. Int J Clin Exp Pathol. 2015;8(5):5017–25.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Juzenas S, Salteniene V, Kupcinskas J, Link A, Kiudelis G, Jonaitis L, et al. Analysis of deregulated microRNAs and their target genes in gastric cancer. PLoS ONE. 2015;10(7):e0132327. doi: 10.1371/journal.pone.0132327.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pignot G, Cizeron-Clairac G, Vacher S, Susini A, Tozlu S, Vieillefond A, et al. microRNA expression profile in a large series of bladder tumors: identification of a 3-miRNA signature associated with aggressiveness of muscle-invasive bladder cancer. Int J Cancer J Int Cancer. 2013;132(11):2479–91. doi: 10.1002/ijc.27949.CrossRefGoogle Scholar
  15. 15.
    Ding M, Lin BY, Li T, Liu YY, Li YH, Zhou XY, et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget. 2015;6(10):7686–700.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V. The role of ATF-2 in oncogenesis. BioEssays : News Rev Mol Cel Dev Biol. 2008;30(4):314–27. doi: 10.1002/bies.20734.CrossRefGoogle Scholar
  17. 17.
    Gozdecka M, Breitwieser W. The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Biochem Soc Trans. 2012;40:230–4. doi: 10.1042/Bst20110630.CrossRefPubMedGoogle Scholar
  18. 18.
    Bhoumik A, Ivanov V, Ronai Z. Activating transcription factor 2-derived peptides alter resistance of human tumor cell lines to ultraviolet irradiation and chemical treatment. Clin Cancer Res Off J Am Assoc Cancer Res. 2001;7(2):331–42.Google Scholar
  19. 19.
    Hu CD, Choo R, Huang J. Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol. 2015;5:90. doi: 10.3389/fonc.2015.00090.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xiao JJ, Liang DD, Zhang H, Liu Y, Zhang DS, Liu Y, et al. MicroRNA-204 is required for differentiation of human-derived cardiomyocyte progenitor cells. J Mol Cell Cardiol. 2012;53(6):751–9. doi: 10.1016/j.yjmcc.2012.08.024.CrossRefPubMedGoogle Scholar
  21. 21.
    Cho WCS. MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Exp Opin Ther Targets. 2012;16(8):747–59. doi: 10.1517/14728222.2012.696102.CrossRefGoogle Scholar
  22. 22.
    Li WD, Jin XJ, Zhang QB, Zhang G, Deng XB, Ma L. Decreased expression of miR-204 is associated with poor prognosis in patients with breast cancer. Int J Clin Exp Pathol. 2014;7(6):3287–92.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Butrym A, Rybka J, Baczynska D, Tukiendorf A, Kuliczkowski K, Mazur G. Low expression of microRNA-204 (miR-204) is associated with poor clinical outcome of acute myeloid leukemia (AML) patients. J Exp Clin Canc Res. 2015;34:68. doi: 10.1186/s13046-015-0184-z.CrossRefGoogle Scholar
  24. 24.
    Sumbul AT, Gogebakan B, Ergun S, Yengil E, Batmaci CY, Tonyali O, et al. miR-204-5p expression in colorectal cancer: an autophagy-associated gene. Tumour Biol. 2014;35(12):12713–9. doi: 10.1007/s13277-014-2596-3.CrossRefPubMedGoogle Scholar
  25. 25.
    Ryan J, Tivnan A, Fay J, Bryan K, Meehan M, Creevey L, et al. MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome (vol 107, pg 967, 2012). Br J Cancer. 2012;107(7):1203. doi: 10.1038/bjc.2012.425.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cortinovis D, Monica V, Pietrantonio F, Ceresoli GL, La Spina CM, Wannesson L. MicroRNAs in non-small cell lung cancer: current status and future therapeutic promises. Curr Pharm Des. 2014;20(24):3982–90.CrossRefPubMedGoogle Scholar
  27. 27.
    Kang SM, Lee HJ. MicroRNAs in human lung cancer. Exp Biol Med. 2014;239(11):1505–13. doi: 10.1177/1535370214533887.CrossRefGoogle Scholar
  28. 28.
    Xia Y, Zhu Y, Ma T, Pan CF, Wang J, He ZC, et al. miR-204 functions as a tumor suppressor by regulating SIX1 in NSCLC. FEBS Lett. 2014;588(20):3703–12. doi: 10.1016/j.febslet.2014.08.016.CrossRefPubMedGoogle Scholar
  29. 29.
    Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. MiR-204 inhibits human NSCLC metastasis through suppression of NUAK1. Br J Cancer. 2014;111(12):2316–27. doi: 10.1038/bjc.2014.580.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Desai S, Kumar A, Laskar S, Pandey BN. Differential roles of ATF-2 in survival and DNA repair contributing to radioresistance induced by autocrine soluble factors in A549 lung cancer cells. Cell Signal. 2014;26(11):2424–35. doi: 10.1016/j.cellsig.2014.07.021.CrossRefPubMedGoogle Scholar
  31. 31.
    Li S, Ezhevsky S, Dewing A, Cato MH, Scortegagna M, Bhoumik A, et al. Radiation sensitivity and tumor susceptibility in ATM phospho-mutant ATF2 mice. Genes Cancer. 2010;1(4):316–30. doi: 10.1177/1947601910370700.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bhoumik A, Fichtman B, DeRossi C, Breitwieser W, Kluger HM, Davis S, et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci U S A. 2008;105(5):1674–9. doi: 10.1073/pnas.0706057105.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Berger AJ, Kluger HM, Li N, Kielhorn E, Halaban R, Ronai Z, et al. Subcellular localization of activating transcription factor 2 in melanoma specimens predicts patient survival. Cancer Res. 2003;63(23):8103–7.PubMedGoogle Scholar
  34. 34.
    Maekawa T, Shinagawa T, Sano Y, Sakuma T, Nomura S, Nagasaki K, et al. Reduced levels of ATF-2 predispose mice to mammary tumors. Mol Cell Biol. 2007;27(5):1730–44. doi: 10.1128/Mcb.01579-06.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nagase T, Sudo T, Maekawa T, Yoshimura T, Fujisawa J, Yoshida M, et al. Promoter region of the human Cre-Bp1 gene encoding the transcriptional regulator binding to the cyclic-Amp response element. J Biol Chem. 1990;265(28):17300–6.PubMedGoogle Scholar
  36. 36.
    Ricote M, Garcia-Tunon I, Bethencourt F, Fraile B, Onsurbe P, Paniagua R, et al. The p38 transduction pathway in prostatic neoplasia. J Pathol. 2006;208(3):401–7. doi: 10.1002/path.1910.CrossRefPubMedGoogle Scholar
  37. 37.
    Beier F, Lee RJ, Taylor AC, Pestell RG, LuValle P. Identification of the cyclin D1 gene as a target of activating transcription factor 2 in chondrocytes. Proc Natl Acad Sci U S A. 1999;96(4):1433–8. doi: 10.1073/pnas.96.4.1433.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Laferriere J, Houle F, Taher MM, Valerie K, Huot J. Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem. 2001;276(36):33762–72. doi: 10.1074/jbc.M008564200.CrossRefPubMedGoogle Scholar
  39. 39.
    Ma Q, Li X, Vale-Cruz D, Brown ML, Beier F, LuValle P. Activating transcription factor 2 controls Bcl-2 promoter activity in growth plate chondrocytes. J Cell Biochem. 2007;101(2):477–87. doi: 10.1002/jcb.21198.CrossRefPubMedGoogle Scholar
  40. 40.
    Decesare D, Vallone D, Caracciolo A, Sassonecorsi P, Nerlov C, Verde P. Heterodimerization of C-Jun with Atf-2 and C-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene. 1995;11(2):365–76.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Shuo Zhang
    • 1
    • 2
  • Lei Gao
    • 1
    • 2
  • Asmitananda Thakur
    • 1
    • 2
    • 3
    • 4
  • Puyu Shi
    • 1
    • 2
  • Feng Liu
    • 1
    • 2
  • Jing Feng
    • 1
    • 2
  • Ting Wang
    • 1
    • 2
  • Yiqian Liang
    • 1
    • 2
  • Johnson J. Liu
    • 5
  • Mingwei Chen
    • 1
    • 2
  • Hui Ren
    • 1
    • 2
  1. 1.Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory DiseasesXi’anChina
  3. 3.Department of Internal MedicineLife Guard HospitalBiratnagarNepal
  4. 4.S. R. Laboratory and Diagnostic CenterBiratnagarNepal
  5. 5.Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyAustralia

Personalised recommendations