Tumor Biology

, Volume 37, Issue 8, pp 10209–10218 | Cite as

Clinical significance of fibroblast growth factor receptor 2 expression in patients with residual rectal cancer after preoperative chemoradiotherapy: relationship with KRAS or BRAF mutations and MSI status

  • Ghilsuk Yoon
  • Hwayoung Lee
  • Jae-Hoon Kim
  • Keun Hur
  • An Na Seo
Original Article


This study was designed to determine the prognostic impact and clinical significance of FGFR2 in residual disease after preoperative chemoradiotherapy (CRT) in patients with rectal cancer. The surgical specimens of 145 patients with residual rectal cancer after preoperative CRT were analyzed. To evaluate FGFR2 expression, immunohistochemistry was performed on whole section tissues. KRAS exon 2 (codon 12 and 13), BRAF V600E mutational status, and microsatellite instability (MSI) were determined using polymerase chain reactions. Of the eligible 141 patients, FGFR2 over-expression was observed in 75.9 % (n = 107) and was correlated with perineural invasion (P = 0.005) and inferior tumor regression grading (TRG) (P = 0.009). However, FGFR2 expression had no relationship with KRAS and BRAF mutation results or with MSI results. On univariate analysis, FGFR2 over-expression was significantly associated with worse rectal cancer-specific survival (RCSS) (P = 0.005) and disease-free survival (DFS) (P = 0.035). However, multivariate analysis revealed that FGFR2 over-expression was not independently associated with RCSS and DFS (all P > 0.05). Although FGFR2 over-expression did not independently influence patient outcome, FGFR2 over-expression was associated with worse prognosis and inferior TRG. Our data may aid in understanding the therapeutic approaches targeting FGFR2 in patients with residual rectal cancer after preoperative CRT.


Rectal cancer Preoperative chemoradiotherapy Fibroblast growth factor receptor 2 Prognosis KRAS Microsatellite instability 



This work was supported by Biomedical Research Institute grant, Kyungpook National University Hospital (2015).

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_4899_Fig3_ESM.jpg (158 kb)
Figure S1

Kaplan-Meier Survival curve for disease-free survival and rectal cancer-specific survival of patients with residual rectal cancer after preoperative chemoradiotherapy according to FGFR2 expression in (a and b) the KRAS wild-type subgroup and (c and d) the KRAS mutational subgroup. (JPG 158 kb)


  1. 1.
    Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40. doi: 10.1056/NEJMoa040694.CrossRefPubMedGoogle Scholar
  2. 2.
    Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up ofA 11 years. J Clin Oncol. 2012;30(16):1926–33. doi: 10.1200/jco.2011.40.1836.CrossRefPubMedGoogle Scholar
  3. 3.
    Kuo LJ, Liu MC, Jian JJ, Horng CF, Cheng TI, Chen CM, et al. Is final TNM staging a predictor for survival in locally advanced rectal cancer after preoperative chemoradiation therapy? Ann Surg Oncol. 2007;14(10):2766–72. doi: 10.1245/s10434-007-9471-z.CrossRefPubMedGoogle Scholar
  4. 4.
    Quah HM, Chou JF, Gonen M, Shia J, Schrag D, Saltz LB, et al. Pathologic stage is most prognostic of disease-free survival in locally advanced rectal cancer patients after preoperative chemoradiation. Cancer. 2008;113(1):57–64. doi: 10.1002/cncr.23516.CrossRefPubMedGoogle Scholar
  5. 5.
    Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23(34):8688–96. doi: 10.1200/jco.2005.02.1329.CrossRefPubMedGoogle Scholar
  6. 6.
    Seo AN, Jin Y, Lee HJ, Sun PL, Kim H, Jheon S, et al. FGFR1 amplification is associated with poor prognosis and smoking in non-small-cell lung cancer. Virchows Arch. 2014;465(5):547–58. doi: 10.1007/s00428-014-1634-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Li CF, He HL, Wang JY, Huang HY, Wu TF, Hsing CH, et al. Fibroblast growth factor receptor 2 overexpression is predictive of poor prognosis in rectal cancer patients receiving neoadjuvant chemoradiotherapy. J Clin Pathol. 2014;67(12):1056–61. doi: 10.1136/jclinpath-2014-202551.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsuda Y, Ueda J, Ishiwata T. Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Patholog Res Int. 2012;2012:574768. doi: 10.1155/2012/574768.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Byron SA, Pollock PM. FGFR2 as a molecular target in endometrial cancer. Future Oncol. 2009;5(1):27–32. doi: 10.2217/14796694.5.1.27.CrossRefPubMedGoogle Scholar
  10. 10.
    Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10. doi: 10.1038/modpathol.2011.110.CrossRefPubMedGoogle Scholar
  11. 11.
    Byron SA, Gartside M, Powell MA, Wellens CL, Gao F, Mutch DG, et al. FGFR2 point mutations in 466 endometrioid endometrial tumors: relationship with MSI, KRAS, PIK3CA, CTNNB1 mutations and clinicopathological features. PLoS One. 2012;7(2), e30801. doi: 10.1371/journal.pone.0030801.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93. doi: 10.1038/nature05887.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee HJ, Seo AN, Park SY, Kim JY, Park JY, Yu JH, et al. Low prognostic implication of fibroblast growth factor family activation in triple-negative breast cancer subsets. Ann Surg Oncol. 2014;21(5):1561–8. doi: 10.1245/s10434-013-3456-x.CrossRefPubMedGoogle Scholar
  14. 14.
    Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29. doi: 10.1038/nrc2780.CrossRefPubMedGoogle Scholar
  15. 15.
    Xie L, Su X, Zhang L, Yin X, Tang L, Zhang X, et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res. 2013;19(9):2572–83. doi: 10.1158/1078-0432.ccr-12-3898.CrossRefPubMedGoogle Scholar
  16. 16.
    Kwak Y, Cho H, Hur W, Sim T. Antitumor effects and mechanisms of AZD4547 on FGFR2-deregulated endometrial cancer cells. Mol Cancer Ther. 2015. doi: 10.1158/1535-7163.mct-15-0032.PubMedGoogle Scholar
  17. 17.
    Konecny GE, Finkler N, Garcia AA, Lorusso D, Lee PS, Rocconi RP, et al. Second-line dovitinib (TKI258) in patients with FGFR2-mutated or FGFR2-non-mutated advanced or metastatic endometrial cancer: a non-randomised, open-label, two-group, two-stage, phase 2 study. Lancet Oncol. 2015;16(6):686–94. doi: 10.1016/s1470-2045(15)70159-2.CrossRefPubMedGoogle Scholar
  18. 18.
    Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng WX, et al. Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer. Cancer Lett. 2011;309(2):209–19. doi: 10.1016/j.canlet.2011.06.009.CrossRefPubMedGoogle Scholar
  19. 19.
    Matsuda Y, Hagio M, Seya T, Ishiwata T. Fibroblast growth factor receptor 2 IIIc as a therapeutic target for colorectal cancer cells. Mol Cancer Ther. 2012;11(9):2010–20. doi: 10.1158/1535-7163.mct-12-0243.CrossRefPubMedGoogle Scholar
  20. 20.
    Yoon G, Kim SM, Kim HJ, Seo AN. Clinical influence of cancer stem cells on residual disease after preoperative chemoradiotherapy for rectal cancer. Tumour Biol. 2015. doi: 10.1007/s13277-015-4201-9.Google Scholar
  21. 21.
    Kim HJ, Choi GS, Park JS, Park S, Kawai K, Watanabe T. Clinical significance of thrombocytosis before preoperative chemoradiotherapy in rectal cancer: predicting pathologic tumor response and oncologic outcome. Ann Surg Oncol. 2014. doi: 10.1245/s10434-014-3988-8.Google Scholar
  22. 22.
    Edge SB, Byrd DR, Compton C, Fritz A, Greene F, Trotti A. American joint committee on cancer staging manual. Am Joint Comm Cancer Staging Man. 2010.Google Scholar
  23. 23.
    Rullier A, Gourgou-Bourgade S, Jarlier M, Bibeau F, Chassagne-Clement C, Hennequin C, et al. Predictive factors of positive circumferential resection margin after radiochemotherapy for rectal cancer: the French randomised trial ACCORD12/0405 PRODIGE 2. Eur J Cancer (Oxford, England: 1990). 2013;49(1):82–9. doi: 10.1016/j.ejca.2012.06.028.CrossRefGoogle Scholar
  24. 24.
    Kwon MJ, Lee SE, Kang SY, Choi YL. Frequency of KRAS, BRAF, and PIK3CA mutations in advanced colorectal cancers: Comparison of peptide nucleic acid-mediated PCR clamping and direct sequencing in formalin-fixed, paraffin-embedded tissue. Pathol Res Pract. 2011;207(12):762–8. doi: 10.1016/j.prp.2011.10.002.CrossRefPubMedGoogle Scholar
  25. 25.
    Kim JH, Bae JM, Kim KJ, Rhee YY, Kim Y, Cho NY, et al. Differential features of microsatellite-unstable colorectal carcinomas depending on EPCAM expression status. Korean J Pathol. 2014;48(4):276–82. doi: 10.4132/KoreanJPathol.2014.48.4.276.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Seo AN, Kwak Y, Kim WH, Kim DW, Kang SB, Choe G, et al. HER3 protein expression in relation to HER2 positivity in patients with primary colorectal cancer: clinical relevance and prognostic value. Virchows Arch. 2015;466(6):645–54. doi: 10.1007/s00428-015-1747-2.CrossRefPubMedGoogle Scholar
  27. 27.
    Carstens RP, Eaton JV, Krigman HR, Walther PJ, Garcia-Blanco MA. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene. 1997;15(25):3059–65. doi: 10.1038/sj.onc.1201498.CrossRefPubMedGoogle Scholar
  28. 28.
    Sakurai K, Yamada N, Yashiro M, Matsuzaki T, Komatsu M, Ohira M, et al. A novel angiogenesis inhibitor, Ki23057, is useful for preventing the progression of colon cancer and the spreading of cancer cells to the liver. Eur J Cancer (Oxford, England: 1990). 2007;43(17):2612–20. doi: 10.1016/j.ejca.2007.09.002.CrossRefGoogle Scholar
  29. 29.
    Qiu H, Yashiro M, Zhang X, Miwa A, Hirakawa K. A FGFR2 inhibitor, Ki23057, enhances the chemosensitivity of drug-resistant gastric cancer cells. Cancer Lett. 2011;307(1):47–52. doi: 10.1016/j.canlet.2011.03.015.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Ghilsuk Yoon
    • 1
    • 2
  • Hwayoung Lee
    • 2
  • Jae-Hoon Kim
    • 3
  • Keun Hur
    • 4
  • An Na Seo
    • 1
    • 2
    • 3
  1. 1.Department of PathologyKyungpook National University Medical CenterDaeguSouth Korea
  2. 2.Department of PathologyKyungpook National University School of MedicineDaeguSouth Korea
  3. 3.Department of PathologyKyungpook National University HospitalDaeguSouth Korea
  4. 4.Department of Biochemistry and Cell Biology, Cell and Matrix Research InstituteKyungpook National University School of MedicineDaeguSouth Korea

Personalised recommendations