Tumor Biology

, Volume 37, Issue 7, pp 9797–9806 | Cite as

High TXNDC5 expression predicts poor prognosis in renal cell carcinoma

  • Ren Mo
  • Jingtao Peng
  • Jiantao Xiao
  • Jian Ma
  • Weiguo Li
  • Jing Wang
  • Yuan Ruan
  • Shaofei Ma
  • Yan Hong
  • Chenji Wang
  • Kun Gao
  • Jie Fan
Original Article

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common primary kidney cancer in adults, and the identification of biomarkers involved in the pathogenesis and prognosis of ccRCC is crucial for early diagnosis and anticancer treatment. In this study, we demonstrate that thioredoxin domain-containing protein 5 (TXNDC5) expression is markedly upregulated in ccRCC tissues in comparison with adjacent non-cancerous tissues through quantitative RT-PCR, Western blotting, and immunohistochemical analyses. Importantly, TXNDC5 expression is negatively correlated with the overall survival of patients. Knockdown of TXNDC5 by siRNAs inhibits the cell growth, migration, and invasion of ccRCC cells as well as sensitizes ccRCC cells to chemotherapeutic drugs, such as Camptothecin and 5-Fluorouracil. Moreover, we used complementary DNA (cDNA) microarray analyses to explore the underlying molecular mechanisms of TXNDC5 in the pathogenesis of ccRCC. We demonstrate that knockdown of TXNDC5 affects the messenger RNA (mRNA) and protein levels of numerous important genes associated with tumorigenesis. In summary, our findings indicate that TXNDC5 performs an essential function in ccRCC pathogenesis and can serve as a novel prognostic marker of ccRCC.

Keywords

TXNDC5 Renal cell carcinoma ER stress Apoptosis 

Notes

Acknowledgments

This work was supported by the following grants and foundations: Program of Science and Technology Commission of Shanghai Municipality (Grant No: 124119a2200) and National Natural Science Foundation of China (Grant No: 81372753).

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2016_4891_MOESM1_ESM.docx (18 kb)
ESM 1 Table S1 (DOCX 17 kb)
13277_2016_4891_MOESM2_ESM.xls (114 kb)
ESM 2 Table S2 (XLS 114 kb)

References

  1. 1.
    Bhatt JR, Finelli A. Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol. 2014;11(9):517–25.CrossRefPubMedGoogle Scholar
  2. 2.
    Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol. 2010;58(3):398–406.CrossRefPubMedGoogle Scholar
  3. 3.
    Ellgaard L, Ruddock LW. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep. 2005;6(1):28–32.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jessop CE, Watkins RH, Simmons JJ, Tasab M, Bulleid NJ. Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. J Cell Sci. 2009;122(Pt 23):4287–95.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, et al. EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem. 2003;278(47):47079–88.CrossRefPubMedGoogle Scholar
  6. 6.
    Charlton HK, Webster J, Kruger S, Simpson F, Richards AA, Whitehead JP. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling. Biochem Biophys Res Commun. 2010;392(2):234–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang L, Song G, Chang X, Tan W, Pan J, Zhu X, et al. The role of TXNDC5 in castration-resistant prostate cancer-involvement of androgen receptor signaling pathway. Oncogene. 2015;34(36):4735–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang L, Hou Y, Li N, Wu K, Zhai J. The influence of TXNDC5 gene on gastric cancer cell. J Cancer Res Clin Oncol. 2010;136(10):1497–505.CrossRefPubMedGoogle Scholar
  9. 9.
    Park MS, Kim SK, Shin HP, Lee SM, Chung JH. TXNDC5 gene polymorphism contributes to increased risk of hepatocellular carcinoma in the Korean male population. Anticancer Res. 2013;33(9):3983–7.PubMedGoogle Scholar
  10. 10.
    Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 2009;9:152.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schonthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica. 2012;2012:857516. doi: 10.6064/2012/857516.
  12. 12.
    Liu Y, Ye Y. Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res. 2011;21(6):867–83.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wang WA, Groenendyk J, Michalak M. Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta. 2014;1843(10):2143–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, et al. Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst. 2004;96(17):1300–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev. 2007;3(1):30–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013;126(Pt 10):2135–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Furqan M, Akinleye A, Mukhi N, Mittal V, Chen Y, Liu D. STAT inhibitors for cancer therapy. J Hematol Oncol. 2013;6:90.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42(1):21–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol. 2003;15(6):725–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Fiandalo MV, Kyprianou N. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol. 2012;34(3):165–75.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gerhard MC, Zantl N, Weirich G, Schliep S, Seiffert B, Hacker G. Functional evaluation of the apoptosome in renal cell carcinoma. Br J Cancer. 2003;89(11):2147–54. doi: 10.1038/sj.bjc.6601436.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kolenko V, Uzzo RG, Bukowski R, Bander NH, Novick AC, Hsi ED, et al. Dead or dying: necrosis versus apoptosis in caspase-deficient human renal cell carcinoma. Cancer Res. 1999;59(12):2838–42.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Ren Mo
    • 1
    • 2
  • Jingtao Peng
    • 1
  • Jiantao Xiao
    • 1
  • Jian Ma
    • 1
  • Weiguo Li
    • 1
  • Jing Wang
    • 4
  • Yuan Ruan
    • 1
  • Shaofei Ma
    • 4
  • Yan Hong
    • 1
  • Chenji Wang
    • 3
  • Kun Gao
    • 3
  • Jie Fan
    • 1
  1. 1.Department of Urology, Shanghai General Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
  2. 2.Department of UrologyInner Mongolia Autonomous Region Peoples HospitalHohhotChina
  3. 3.State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Department of Pathology, Shanghai General Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations