Tumor Biology

, Volume 37, Issue 7, pp 9865–9874 | Cite as

Elevated serum microRNA-122/222 levels are potential diagnostic biomarkers in Egyptian patients with chronic hepatitis C but not hepatic cancer

  • Tarek M. K. Motawi
  • Nermin A. H. Sadik
  • Olfat G. Shaker
  • Maggy H. Ghaleb
Original Article


MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. Because of their size, specificity, and relative stability in plasma, miRNAs can be used as diagnostic and prognostic biomarkers to monitor liver injury, such as that caused by hepatitis C virus (HCV) and liver cancer. In this study, we investigated miRNA expression patterns from the serum of Egyptian patients with HCV and liver cancer compared with matched healthy controls. Using microarray-based expression profiling followed by real-time quantitative polymerase chain reaction validation, we compared the levels of circulating miRNA-122 and miRNA-222 in serum from patients with hepatitis C virus (n = 40) and liver cancer (n = 60) to matched healthy controls (n = 30). MiRNA SNORD68 was the housekeeping endogenous control. We found that the serum levels of miR-122 and miR-222 were significantly elevated in HCV patients, but not in liver cancer patients, compared with controls. Receiver operating characteristic analysis revealed that miR-122 and miR-222 have a high diagnostic potential in discriminating patients with HCV from controls. Serum miR-222 was significantly higher in HCV patients compared to liver cancer patients. Our results indicate that serum miR-122 and miR-222 are elevated in Egyptian patients with chronic HCV, and these miRNAs have a strong potential to serve as novel biomarkers for liver injury but not specifically for liver cancer.


MiRNA-122 miRNA-222 Hepatitis C Liver cancer 







Alkaline phosphatase


Alanine aminotransferase


Aspartate aminotransferase


Area under the curve


Cyclin-dependent kinase 4


Coding region


Cycle threshold


Direct bilirubin


Ethylenediaminetetraacetic acid


Hepatitis B virus


Hepatocellular carcinoma


Hepatitis C virus




Ribonucleic acid


Receiver operating characteristic


Real-time reverse transcription quantitative polymerase chain reaction


Total bilirubin



We thank Dr. Gamal Esmat (Tropical Medicine Department, Faculty of Medicine Kasr El-Aini Hospital, Cairo University, Cairo, Egypt) for providing the HCV samples.

Compliance with Ethical Standards

The study protocol was approved by the ethical committee of the Faculty Pharmacy, Cairo University, and conformed to the ethical guidelines of the 1975 Helsinki declaration.

Conflicts of interest



  1. 1.
    Ikeda K, Saitoh S, Suzuki Y, Kobayashi M, Tsubota A, Koida I, et al. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol. 1998;28(6):930–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Deuffic-Burban S, Mohamed MK, Larouze B, Carrat F, Valleron AJ. Expected increase in hepatitis C-related mortality in Egypt due to pre-2000 infections. J Hepatol. 2006;44(3):455–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Nguyen MH, Keeffe EB. Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6. Clin Gastroenterol Hepatol. 2005;3 Suppl 2:S97–101.CrossRefPubMedGoogle Scholar
  4. 4.
    Egyptian Ministry of Health. Egyptian Ministry of Health Annual Report MOHP, 2007
  5. 5.
    Abdel-Aziz F, Habib M, Mohamed MK, Abdel-Hamid M, Gamil F, Madkour S, et al. Hepatitis C virus (HCV) infection in a community in the Nile Delta: population description and HCV prevalence. Hepatology. 2000;32:111–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  7. 7.
    Kudo M. Hepatocellular carcinoma in 2011 and beyond: from the pathogenesis to molecular targeted therapy. Oncology. 2011;81 Suppl 1:1–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Meguro M, Mizuguchi T, Kawamoto M, Hirata K .The molecular pathogenesis and clinical implications of hepatocellular carcinoma.Int J Hepatol. 2011; 818672.doi:  10.4061/2011/818672.
  9. 9.
    Yamazaki K, Masugi Y, Sakamoto M. Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-beta signaling in hepatocarcinogenesis. Dig Dis. 2011;29(3):284–8. doi: 10.1159/000327560.CrossRefPubMedGoogle Scholar
  10. 10.
    Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2011;94(2):153–6.CrossRefGoogle Scholar
  11. 11.
    Yu MC, Yuan JM, Govindarajan S, Ross RK. Epidemiology of hepatocellular carcinoma. Can J Gastroenterol. 2000;14(8):703–9.CrossRefPubMedGoogle Scholar
  12. 12.
    National Cancer Registry of Egypt. Magnitude of hepatocellular carcinoma in Egypt NCI, 2007
  13. 13.
    Freedman LS, Edwards BK, Ries LAG, Young JL (eds.). Cancer incidence in four member countries (Cyprus, Egypt, Israel, and Jordan) of the Middle East Cancer Consortium (MECC) compared with US SEER. 2006; NIH Pub. No. 06–5873. Bethesda: National Cancer InstituteGoogle Scholar
  14. 14.
    Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, et al. Variation in gene expression patterns in human gastric cancers. Mol Biol Cell. 2003;14(8):3208–15. doi: 10.1091/mbc.E02-12-0833.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Neilson JR, Sharp PA. Small RNA regulators of gene expression. Cell. 2008;134(6):899–902. doi: 10.1016/j.cell.2008.09.006.CrossRefPubMedGoogle Scholar
  17. 17.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Stefani G, Slack FJ. Small noncoding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30. doi: 10.1038/nrm2347.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55. doi: 10.1038/nature10888.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311. doi: 10.1016/j.ejca.2009.10.027.CrossRefPubMedGoogle Scholar
  23. 23.
    Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284(46):32015–27. doi: 10.1074/jbc.M109.016774.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49(5):1571–82. doi: 10.1002/hep.22806.CrossRefPubMedGoogle Scholar
  25. 25.
    Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36. doi: 10.1038/onc.2009.211.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. Embo J. 2007;26:3699–708.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012;61(11):1600–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with “antagomirs”. Nature. 2005;438(7068):685–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem. 2006;99(3):671–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310(3):160–9. doi: 10.1016/j.canlet.2011.06.027.PubMedGoogle Scholar
  31. 31.
    Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg. 1964;1:1–85.PubMedGoogle Scholar
  32. 32.
    Barshack I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, et al. MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol Res Pract. 2010;206(8):578–84. doi: 10.1016/j.prp.2010.03.005.CrossRefPubMedGoogle Scholar
  33. 33.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−delta delta C (T)) method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55. doi: 10.1016/j.cell.2009.01.035.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mott JL, Kobayashi S, Bronk SF, Gores GJ. Mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26(42):6133–40. doi: 10.1038/sj.onc.1210436.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kanda T, Ishibashi O, Kawahigashi Y, Mishima T, Kosuge T, Mizuguchi Y, et al. Identification of obstructive jaundice-related microRNAs in mouse liver. Hepatogastroenterology. 2010;57(102–103):1013–23.PubMedGoogle Scholar
  37. 37.
    Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53:209–18. doi: 10.1002/hep.23922.CrossRefPubMedGoogle Scholar
  38. 38.
    Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60–70. doi: 10.1002/hep.23660.CrossRefPubMedGoogle Scholar
  39. 39.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. doi: 10.1073/pnas.0804549105.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83. doi: 10.1373/clinchem.2009.131797.CrossRefPubMedGoogle Scholar
  41. 41.
    Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52. doi: 10.1074/jbc.M110.107821.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3), e30679. doi: 10.1371/journal.pone.0030679.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309(5740):1577–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM. Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol. 2008;82(16):8215–23. doi: 10.1128/JVI.02575-07.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Xu J, Wu C, Che X, Wang L, Yu D, Zhang T, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011;50(2):136–42. doi: 10.1002/mc.20712.CrossRefPubMedGoogle Scholar
  47. 47.
    Jopling CL. Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans. 2008;36(pt 6):1220–3. doi: 10.1042/BST0361220.CrossRefPubMedGoogle Scholar
  48. 48.
    Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, et al. MicroRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008;27(24):3300–10. doi: 10.1038/emboj.2008.244.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Machlin ES, Sarnow P, Sagan SM. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A. 2011;108(8):3193–8. doi: 10.1073/pnas.1012464108.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Bnendra MA, et al. Mir-122, a mammalian liver-specific microRNA, is processed from her mRNA and may down regulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1(2):106–13.CrossRefPubMedGoogle Scholar
  52. 52.
    Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008;375(3):315–20. doi: 10.1016/j.bbrc.2008.07.154.CrossRefPubMedGoogle Scholar
  53. 53.
    Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.CrossRefPubMedGoogle Scholar
  54. 54.
    Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009;23(11):1313–26. doi: 10.1101/gad.1781009.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Castoldi M, VujicSpasic M, Altamura S, Elmén J, Lindow M, Kiss J, et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest. 2011;121(4):1386–96. doi: 10.1172/JCI44883.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim N, Kim H, Jung I, Kim Y, Kim D, Han YM. Expression profiles of miRNAs in human embryonic stem cells during hepatocyte differentiation. Hepatol Res. 2011;41(2):170–83. doi: 10.1111/j.1872-034X.2010.00752.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Galardi S, Mercatelli N, Farace MG, Ciafrè SA. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 2011;39(9):3892–902. doi: 10.1093/nar/gkr006.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96(5):2461–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rippe RA, Schrum LW, Stefanovic B, Solís-Herruzo JA, Brenner DA. NF-kappaB inhibits expression of the alpha 1(I) collagen gene. DNA Cell Biol. 1999;18(10):751–61.CrossRefPubMedGoogle Scholar
  60. 60.
    Lang A, Schoonhoven R, Tuvia S, Brenner DA, Rippe RA. Nuclear factor kappaB in proliferation, activation and apoptosis in rat hepatic stellate cells. J Hepatol. 2000;33:49–58.CrossRefPubMedGoogle Scholar
  61. 61.
    Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275(4):2247–50.CrossRefPubMedGoogle Scholar
  62. 62.
    Kawada N. Evolution of hepatic fibrosis research. Hepatol Res. 2011;41(3):199–208. doi: 10.1111/j.1872-034X.2011.00776.x.CrossRefPubMedGoogle Scholar
  63. 63.
    Mazzocca A, Carloni V, Sciammetta S, Cordella C, Pantaleo P, Caldini A, et al. Expression of transmembrane 4 superfamily (TM4SF) proteins and their role in hepatic stellate cell motility and wound healing migration. J Hepatol. 2002;37(3):322–30.CrossRefPubMedGoogle Scholar
  64. 64.
    Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T. CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci U S A. 2004;101(19):7270–4.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mazzocca A, Sciammetta SC, Carloni V, Cosmi L, Annunziato F, Harada T, et al. Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem. 2005;280(12):11329–39.CrossRefPubMedGoogle Scholar
  66. 66.
    Bataller R, Paik YH, Lindquist JN, Lemasters JJ, Brenner DA. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology. 2004;126(2):529–40.CrossRefPubMedGoogle Scholar
  67. 67.
    Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007;67(13):6092–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69(14):5761–7. doi: 10.1158/0008-5472.CAN-08-4797.CrossRefPubMedGoogle Scholar
  69. 69.
    Wu X, Wu S, Tong L, Luan T, Lin L, Lu S, et al. miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells. Scand J Gastroenterol. 2009;44(11):1332–9. doi: 10.3109/00365520903215305.CrossRefPubMedGoogle Scholar
  70. 70.
    Pineau P, Volinia S, McJunkin K, Marchio A, Battuston C, Terris B, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA. 2010;107:264–9. doi: 10.1073/pnas.0907904107.CrossRefPubMedGoogle Scholar
  71. 71.
    Fuse M, Kojima S, Enokida H, Chiyomaru T, Yoshino H, Nohata N, et al. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on miRNA expression signature in prostate cancer. J Hum Genet. 2012;57(11):691–9. doi: 10.1038/jhg.2012.95.CrossRefPubMedGoogle Scholar
  72. 72.
    Xiao L, Cui YH, Rao JN, Zou T, Liu L, Smith A, et al. Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Mol Biol Cell. 2011;22:3055–69. doi: 10.1091/mbc.E11-01-0069.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Casero RA, Pegg AE. Polyamine catabolism and disease. Biochem J. 2009;421(3):323–38. doi: 10.1042/BJ20090598.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14. doi: 10.1038/ncb1975.CrossRefPubMedGoogle Scholar
  75. 75.
    Reed SI. Control of the G1/S transition. Cancer Surv. 1997;29:7–23.PubMedGoogle Scholar
  76. 76.
    Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27 (Kip1) activity. Mol Cell Biol. 1999;19(10):7011–9.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hermeking H. P53 enters the microRNA world. Cancer Cell. 2007;12(5):414–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Li L, Rao JN, Guo X, Liu L, Santora R, Bass BL, et al. Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation. Am J Physiol Cell Physiol. 2001;281(3):C941–53.PubMedGoogle Scholar
  79. 79.
    Zou T, Mazan-Mamczarz K, Rao JN, Liu L, Marasa BS, Zhang AH, et al. Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem. 2006;281(28):19387–94.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Tarek M. K. Motawi
    • 1
  • Nermin A. H. Sadik
    • 1
  • Olfat G. Shaker
    • 2
  • Maggy H. Ghaleb
    • 3
  1. 1.Biochemistry Department, Faculty of PharmacyCairo UniversityCairoEgypt
  2. 2.Medical Biochemistry and Molecular Biology Department, Faculty of MedicineCairo UniversityCairoEgypt
  3. 3.Biochemistry Department, Faculty of PharmacyMisr International UniversityCairoEgypt

Personalised recommendations