Skip to main content
Log in

Elevated serum microRNA-122/222 levels are potential diagnostic biomarkers in Egyptian patients with chronic hepatitis C but not hepatic cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that regulate gene expression at the post-transcriptional level. Because of their size, specificity, and relative stability in plasma, miRNAs can be used as diagnostic and prognostic biomarkers to monitor liver injury, such as that caused by hepatitis C virus (HCV) and liver cancer. In this study, we investigated miRNA expression patterns from the serum of Egyptian patients with HCV and liver cancer compared with matched healthy controls. Using microarray-based expression profiling followed by real-time quantitative polymerase chain reaction validation, we compared the levels of circulating miRNA-122 and miRNA-222 in serum from patients with hepatitis C virus (n = 40) and liver cancer (n = 60) to matched healthy controls (n = 30). MiRNA SNORD68 was the housekeeping endogenous control. We found that the serum levels of miR-122 and miR-222 were significantly elevated in HCV patients, but not in liver cancer patients, compared with controls. Receiver operating characteristic analysis revealed that miR-122 and miR-222 have a high diagnostic potential in discriminating patients with HCV from controls. Serum miR-222 was significantly higher in HCV patients compared to liver cancer patients. Our results indicate that serum miR-122 and miR-222 are elevated in Egyptian patients with chronic HCV, and these miRNAs have a strong potential to serve as novel biomarkers for liver injury but not specifically for liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

ALB:

Albumin

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

AUC:

Area under the curve

CDK4:

Cyclin-dependent kinase 4

CR:

Coding region

CT:

Cycle threshold

DB:

Direct bilirubin

EDTA:

Ethylenediaminetetraacetic acid

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

MiRNAs:

microRNAs

RNA:

Ribonucleic acid

ROC:

Receiver operating characteristic

RT-qPCR:

Real-time reverse transcription quantitative polymerase chain reaction

TB:

Total bilirubin

References

  1. Ikeda K, Saitoh S, Suzuki Y, Kobayashi M, Tsubota A, Koida I, et al. Disease progression and hepatocellular carcinogenesis in patients with chronic viral hepatitis: a prospective observation of 2215 patients. J Hepatol. 1998;28(6):930–8.

    Article  CAS  PubMed  Google Scholar 

  2. Deuffic-Burban S, Mohamed MK, Larouze B, Carrat F, Valleron AJ. Expected increase in hepatitis C-related mortality in Egypt due to pre-2000 infections. J Hepatol. 2006;44(3):455–61.

    Article  PubMed  Google Scholar 

  3. Nguyen MH, Keeffe EB. Prevalence and treatment of hepatitis C virus genotypes 4, 5, and 6. Clin Gastroenterol Hepatol. 2005;3 Suppl 2:S97–101.

    Article  CAS  PubMed  Google Scholar 

  4. Egyptian Ministry of Health. Egyptian Ministry of Health Annual Report MOHP, 2007 http://www.mohp.gov.eg/Main.asp.

  5. Abdel-Aziz F, Habib M, Mohamed MK, Abdel-Hamid M, Gamil F, Madkour S, et al. Hepatitis C virus (HCV) infection in a community in the Nile Delta: population description and HCV prevalence. Hepatology. 2000;32:111–5.

    Article  CAS  PubMed  Google Scholar 

  6. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  7. Kudo M. Hepatocellular carcinoma in 2011 and beyond: from the pathogenesis to molecular targeted therapy. Oncology. 2011;81 Suppl 1:1–10.

    Article  CAS  PubMed  Google Scholar 

  8. Meguro M, Mizuguchi T, Kawamoto M, Hirata K .The molecular pathogenesis and clinical implications of hepatocellular carcinoma.Int J Hepatol. 2011; 818672.doi: 10.4061/2011/818672.

  9. Yamazaki K, Masugi Y, Sakamoto M. Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-beta signaling in hepatocarcinogenesis. Dig Dis. 2011;29(3):284–8. doi:10.1159/000327560.

    Article  PubMed  Google Scholar 

  10. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2011;94(2):153–6.

    Article  Google Scholar 

  11. Yu MC, Yuan JM, Govindarajan S, Ross RK. Epidemiology of hepatocellular carcinoma. Can J Gastroenterol. 2000;14(8):703–9.

    Article  CAS  PubMed  Google Scholar 

  12. National Cancer Registry of Egypt. Magnitude of hepatocellular carcinoma in Egypt NCI, 2007 http://www.nci.edu.eg.

  13. Freedman LS, Edwards BK, Ries LAG, Young JL (eds.). Cancer incidence in four member countries (Cyprus, Egypt, Israel, and Jordan) of the Middle East Cancer Consortium (MECC) compared with US SEER. 2006; NIH Pub. No. 06–5873. Bethesda: National Cancer Institute

  14. Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, et al. Variation in gene expression patterns in human gastric cancers. Mol Biol Cell. 2003;14(8):3208–15. doi:10.1091/mbc.E02-12-0833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41.

    Article  CAS  PubMed  Google Scholar 

  16. Neilson JR, Sharp PA. Small RNA regulators of gene expression. Cell. 2008;134(6):899–902. doi:10.1016/j.cell.2008.09.006.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  18. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50.

    Article  CAS  PubMed  Google Scholar 

  19. Stefani G, Slack FJ. Small noncoding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30. doi:10.1038/nrm2347.

    Article  CAS  PubMed  Google Scholar 

  20. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  21. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55. doi:10.1038/nature10888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 2010;46(2):298–311. doi:10.1016/j.ejca.2009.10.027.

    Article  CAS  PubMed  Google Scholar 

  23. Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284(46):32015–27. doi:10.1074/jbc.M109.016774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsai WC, Hsu PW, Lai TC, Chau GY, Lin CW, Chen CM, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology. 2009;49(5):1571–82. doi:10.1002/hep.22806.

    Article  CAS  PubMed  Google Scholar 

  25. Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36. doi:10.1038/onc.2009.211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. Embo J. 2007;26:3699–708.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 2012;61(11):1600–9.

    Article  CAS  PubMed  Google Scholar 

  28. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with “antagomirs”. Nature. 2005;438(7068):685–9.

    Article  PubMed  Google Scholar 

  29. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem. 2006;99(3):671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310(3):160–9. doi:10.1016/j.canlet.2011.06.027.

    CAS  PubMed  Google Scholar 

  31. Child CG, Turcotte JG. Surgery and portal hypertension. Major Probl Clin Surg. 1964;1:1–85.

    CAS  PubMed  Google Scholar 

  32. Barshack I, Lithwick-Yanai G, Afek A, Rosenblatt K, Tabibian-Keissar H, Zepeniuk M, et al. MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathol Res Pract. 2010;206(8):578–84. doi:10.1016/j.prp.2010.03.005.

    Article  CAS  PubMed  Google Scholar 

  33. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−delta delta C (T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  34. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55. doi:10.1016/j.cell.2009.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mott JL, Kobayashi S, Bronk SF, Gores GJ. Mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26(42):6133–40. doi:10.1038/sj.onc.1210436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanda T, Ishibashi O, Kawahigashi Y, Mishima T, Kosuge T, Mizuguchi Y, et al. Identification of obstructive jaundice-related microRNAs in mouse liver. Hepatogastroenterology. 2010;57(102–103):1013–23.

    CAS  PubMed  Google Scholar 

  37. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53:209–18. doi:10.1002/hep.23922.

    Article  CAS  PubMed  Google Scholar 

  38. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60–70. doi:10.1002/hep.23660.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. doi:10.1073/pnas.0804549105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83. doi:10.1373/clinchem.2009.131797.

    Article  CAS  PubMed  Google Scholar 

  41. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52. doi:10.1074/jbc.M110.107821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3), e30679. doi:10.1371/journal.pone.0030679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  44. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309(5740):1577–81.

    Article  CAS  PubMed  Google Scholar 

  45. Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM. Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol. 2008;82(16):8215–23. doi:10.1128/JVI.02575-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu J, Wu C, Che X, Wang L, Yu D, Zhang T, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011;50(2):136–42. doi:10.1002/mc.20712.

    Article  CAS  PubMed  Google Scholar 

  47. Jopling CL. Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans. 2008;36(pt 6):1220–3. doi:10.1042/BST0361220.

    Article  CAS  PubMed  Google Scholar 

  48. Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, et al. MicroRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008;27(24):3300–10. doi:10.1038/emboj.2008.244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Machlin ES, Sarnow P, Sagan SM. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A. 2011;108(8):3193–8. doi:10.1073/pnas.1012464108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.

    Article  CAS  PubMed  Google Scholar 

  51. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Bnendra MA, et al. Mir-122, a mammalian liver-specific microRNA, is processed from her mRNA and may down regulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 2004;1(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  52. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2008;375(3):315–20. doi:10.1016/j.bbrc.2008.07.154.

    Article  CAS  PubMed  Google Scholar 

  53. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.

    Article  CAS  PubMed  Google Scholar 

  54. Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009;23(11):1313–26. doi:10.1101/gad.1781009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Castoldi M, VujicSpasic M, Altamura S, Elmén J, Lindow M, Kiss J, et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest. 2011;121(4):1386–96. doi:10.1172/JCI44883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim N, Kim H, Jung I, Kim Y, Kim D, Han YM. Expression profiles of miRNAs in human embryonic stem cells during hepatocyte differentiation. Hepatol Res. 2011;41(2):170–83. doi:10.1111/j.1872-034X.2010.00752.x.

    Article  CAS  PubMed  Google Scholar 

  57. Galardi S, Mercatelli N, Farace MG, Ciafrè SA. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 2011;39(9):3892–902. doi:10.1093/nar/gkr006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96(5):2461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rippe RA, Schrum LW, Stefanovic B, Solís-Herruzo JA, Brenner DA. NF-kappaB inhibits expression of the alpha 1(I) collagen gene. DNA Cell Biol. 1999;18(10):751–61.

    Article  CAS  PubMed  Google Scholar 

  60. Lang A, Schoonhoven R, Tuvia S, Brenner DA, Rippe RA. Nuclear factor kappaB in proliferation, activation and apoptosis in rat hepatic stellate cells. J Hepatol. 2000;33:49–58.

    Article  CAS  PubMed  Google Scholar 

  61. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275(4):2247–50.

    Article  CAS  PubMed  Google Scholar 

  62. Kawada N. Evolution of hepatic fibrosis research. Hepatol Res. 2011;41(3):199–208. doi:10.1111/j.1872-034X.2011.00776.x.

    Article  CAS  PubMed  Google Scholar 

  63. Mazzocca A, Carloni V, Sciammetta S, Cordella C, Pantaleo P, Caldini A, et al. Expression of transmembrane 4 superfamily (TM4SF) proteins and their role in hepatic stellate cell motility and wound healing migration. J Hepatol. 2002;37(3):322–30.

    Article  CAS  PubMed  Google Scholar 

  64. Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T. CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci U S A. 2004;101(19):7270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mazzocca A, Sciammetta SC, Carloni V, Cosmi L, Annunziato F, Harada T, et al. Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem. 2005;280(12):11329–39.

    Article  CAS  PubMed  Google Scholar 

  66. Bataller R, Paik YH, Lindquist JN, Lemasters JJ, Brenner DA. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology. 2004;126(2):529–40.

    Article  CAS  PubMed  Google Scholar 

  67. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 2007;67(13):6092–9.

    Article  CAS  PubMed  Google Scholar 

  68. Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69(14):5761–7. doi:10.1158/0008-5472.CAN-08-4797.

    Article  CAS  PubMed  Google Scholar 

  69. Wu X, Wu S, Tong L, Luan T, Lin L, Lu S, et al. miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells. Scand J Gastroenterol. 2009;44(11):1332–9. doi:10.3109/00365520903215305.

    Article  CAS  PubMed  Google Scholar 

  70. Pineau P, Volinia S, McJunkin K, Marchio A, Battuston C, Terris B, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci USA. 2010;107:264–9. doi:10.1073/pnas.0907904107.

    Article  CAS  PubMed  Google Scholar 

  71. Fuse M, Kojima S, Enokida H, Chiyomaru T, Yoshino H, Nohata N, et al. Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on miRNA expression signature in prostate cancer. J Hum Genet. 2012;57(11):691–9. doi:10.1038/jhg.2012.95.

    Article  CAS  PubMed  Google Scholar 

  72. Xiao L, Cui YH, Rao JN, Zou T, Liu L, Smith A, et al. Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Mol Biol Cell. 2011;22:3055–69. doi:10.1091/mbc.E11-01-0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Casero RA, Pegg AE. Polyamine catabolism and disease. Biochem J. 2009;421(3):323–38. doi:10.1042/BJ20090598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14. doi:10.1038/ncb1975.

    Article  CAS  PubMed  Google Scholar 

  75. Reed SI. Control of the G1/S transition. Cancer Surv. 1997;29:7–23.

    CAS  PubMed  Google Scholar 

  76. Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27 (Kip1) activity. Mol Cell Biol. 1999;19(10):7011–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hermeking H. P53 enters the microRNA world. Cancer Cell. 2007;12(5):414–8.

    Article  CAS  PubMed  Google Scholar 

  78. Li L, Rao JN, Guo X, Liu L, Santora R, Bass BL, et al. Polyamine depletion stabilizes p53 resulting in inhibition of normal intestinal epithelial cell proliferation. Am J Physiol Cell Physiol. 2001;281(3):C941–53.

    CAS  PubMed  Google Scholar 

  79. Zou T, Mazan-Mamczarz K, Rao JN, Liu L, Marasa BS, Zhang AH, et al. Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem. 2006;281(28):19387–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gamal Esmat (Tropical Medicine Department, Faculty of Medicine Kasr El-Aini Hospital, Cairo University, Cairo, Egypt) for providing the HCV samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggy H. Ghaleb.

Ethics declarations

The study protocol was approved by the ethical committee of the Faculty Pharmacy, Cairo University, and conformed to the ethical guidelines of the 1975 Helsinki declaration.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motawi, T.M.K., Sadik, N.A.H., Shaker, O.G. et al. Elevated serum microRNA-122/222 levels are potential diagnostic biomarkers in Egyptian patients with chronic hepatitis C but not hepatic cancer. Tumor Biol. 37, 9865–9874 (2016). https://doi.org/10.1007/s13277-016-4884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4884-6

Keywords

Navigation