Advertisement

Tumor Biology

, Volume 37, Issue 8, pp 10177–10185 | Cite as

Differential blood-based diagnosis between benign prostatic hyperplasia and prostate cancer: miRNA as source for biomarkers independent of PSA level, Gleason score, or TNM status

  • Petra Leidinger
  • Martin Hart
  • Christina Backes
  • Stefanie Rheinheimer
  • Bastian Keck
  • Bernd Wullich
  • Andreas Keller
  • Eckart Meese
Original Article

Abstract

Since the benefit of prostate-specific antigen (PSA) screening remains controversial, new non-invasive biomarkers for prostate carcinoma (PCa) are still required. There is evidence that microRNAs (miRNAs) in whole peripheral blood can separate patients with localized prostate cancer from healthy individuals. However, the potential of blood-based miRNAs for the differential diagnosis of PCa and benign prostatic hyperplasia (BPH) has not been tested. We compared the miRNome from blood of PCa and BPH patients and further investigated the influence of the tumor volume, tumor-node-metastasis (TNM) classification, Gleason score, pretreatment risk status, and the pretreatment PSA value on the miRNA pattern. By microarray approach, we identified seven miRNAs that were significantly deregulated in PCa patients compared to BPH patients. Using quantitative real time PCR (qRT-PCR), we confirmed downregulation of hsa-miR-221* (now hsa-miR-221-5p) and hsa-miR-708* (now hsa-miR-708-3p) in PCa compared to BPH. Clinical parameters like PSA level, Gleason score, or TNM status seem to have only limited impact on the overall abundance of miRNAs in patients’ blood, suggesting a no influence of these factors on the expression of deregulated miRNAs.

Keywords

MicroRNA Prostate cancer Benign prostatic hyperplasia Microarray Expression analysis 

Notes

Compliance with ethical standards

Conflicts of interest

None

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

13277_2016_4883_MOESM1_ESM.xlsx (9 kb)
ESM 1 Validated target genes of miRNAs miR-675, miR-1180, miR-1225-5p, miR-659, miR-708* and miR-221* (XLSX 9.31 kb)

References

  1. 1.
    Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. doi: 10.1016/j.ejca.2012.12.027.CrossRefPubMedGoogle Scholar
  2. 2.
    Kuriyama M, Wang MC, Papsidero LD, Killian CS, Shimano T, Valenzuela L, et al. Quantitation of prostate-specific antigen in serum by a sensitive enzyme immunoassay. Cancer Res. 1980;40(12):4658–62.PubMedGoogle Scholar
  3. 3.
    Velonas VM, Woo HH, Remedios CG, Assinder SJ. Current status of biomarkers for prostate cancer. Int J Mol Sci. 2013;14(6):11034–60. doi: 10.3390/ijms140611034.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pinsky PF, Kramer BS, Crawford ED, Grubb RL, Urban DA, Andriole GL, et al. Prostate volume and prostate-specific antigen levels in men enrolled in a large screening trial. Urology. 2006;68(2):352–6. doi: 10.1016/j.urology.2006.02.026.CrossRefPubMedGoogle Scholar
  5. 5.
    Armitage TG, Cooper EH, Newling DW, Robinson MR, Appleyard I. The value of the measurement of serum prostate specific antigen in patients with benign prostatic hyperplasia and untreated prostate cancer. Br J Urol. 1988;62(6):584–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Tornblom M, Norming U, Adolfsson J, Becker C, Abrahamsson PA, Lilja H, et al. Diagnostic value of percent free prostate-specific antigen: retrospective analysis of a population-based screening study with emphasis on men with PSA levels less than 3.0 ng/mL. Urology. 1999;53(5):945–50.CrossRefPubMedGoogle Scholar
  7. 7.
    Bangma CH, Roemeling S, Schroder FH. Overdiagnosis and overtreatment of early detected prostate cancer. World J Urol. 2007;25(1):3–9. doi: 10.1007/s00345-007-0145-z.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bokhorst LP, Bangma CH, van Leenders GJ, Lous JJ, Moss SM, Schroder FH, et al. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European randomized study of screening for prostate cancer. Eur Urol. 2014;65(2):329–36. doi: 10.1016/j.eururo.2013.08.005.CrossRefPubMedGoogle Scholar
  9. 9.
    Pokorny MR, de Rooij M, Duncan E, Schroder FH, Parkinson R, Barentsz JO, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol. 2014;66(1):22–9. doi: 10.1016/j.eururo.2014.03.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8. doi: 10.1126/science.1117679.CrossRefPubMedGoogle Scholar
  11. 11.
    Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.PubMedGoogle Scholar
  12. 12.
    Edwards SM, Evans DG, Hope Q, Norman AR, Barbachano Y, Bullock S, et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer. 2010;103(6):918–24. doi: 10.1038/sj.bjc.6605822.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hart M, Nolte E, Wach S, Szczyrba J, Taubert H, Rau TT, et al. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol Cancer Res: MCR. 2014;12(2):250–63. doi: 10.1158/1541-7786.MCR-13-0230.CrossRefPubMedGoogle Scholar
  14. 14.
    Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer J Int Du Cancer. 2012;131(3):652–61. doi: 10.1002/ijc.26405.CrossRefGoogle Scholar
  15. 15.
    Medina-Villaamil V, Martinez-Breijo S, Portela-Pereira P, Quindos-Varela M, Santamarina-Cainzos I, Anton-Aparicio LM, et al. Circulating microRNAs in blood of patients with prostate cancer. Actas Urol Esp. 2014. doi: 10.1016/j.acuro.2014.02.008.PubMedGoogle Scholar
  16. 16.
    Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925–30. doi: 10.1038/bjc.2013.192.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006;25(46):6163–9. doi: 10.1038/sj.onc.1209909.CrossRefPubMedGoogle Scholar
  19. 19.
    Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA. 2010;16(12):2493–502. doi: 10.1261/rna.2384610.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K, et al. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol. 2010;28(1):4–13. doi: 10.1016/j.urolonc.2008.10.021.CrossRefPubMedGoogle Scholar
  21. 21.
    Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr-Relat Cancer. 2010;17(1):F1–17. doi: 10.1677/ERC-09-0172.CrossRefPubMedGoogle Scholar
  22. 22.
    Maugeri-Sacca M, Coppola V, Bonci D, De Maria R. MicroRNAs and prostate cancer: from preclinical research to translational oncology. Cancer J. 2012;18(3):253–61. doi: 10.1097/PPO.0b013e318258b5b6.CrossRefPubMedGoogle Scholar
  23. 23.
    Leidinger P, Backes C, Blatt M, Keller A, Huwer H, Lepper P, et al. The blood-borne miRNA signature of lung cancer patients is independent of histology but influenced by metastases. Mol Cancer. 2014;13(1):202. doi: 10.1186/1476-4598-13-202.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schmitt J, Backes C, Nourkami-Tutdibi N, Leidinger P, Deutscher S, Beier M, et al. Treatment-independent miRNA signature in blood of Wilms tumor patients. BMC Genomics. 2012;13:379. doi: 10.1186/1471-2164-13-379.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A, Hemmrich-Stanisak G, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler. 2014;20(3):295–303. doi: 10.1177/1352458513496343.CrossRefPubMedGoogle Scholar
  26. 26.
    Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14(7):R78. doi: 10.1186/gb-2013-14-7-r78.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, et al. Toward the blood-borne miRNome of human diseases. Nat Methods. 2011;8(10):841–3. doi: 10.1038/nmeth.1682.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang Q, Zheng Y, Zhu D. Diagnostic performance of microRNAs expression in prostate cancer. Tumour Biol. 2014. doi: 10.1007/s13277-014-2351-9.Google Scholar
  29. 29.
    Santos JI, Teixeira AL, Dias F, Mauricio J, Lobo F, Morais A, et al. Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: evidences from in vitro and in vivo studies. Tumour Biol. 2014. doi: 10.1007/s13277-014-1918-9.Google Scholar
  30. 30.
    Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768–74. doi: 10.1038/bjc.2011.595.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77(5):1265 e9–16. doi: 10.1016/j.urology.2011.01.020.CrossRefGoogle Scholar
  32. 32.
    Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72(13):1443–52. doi: 10.1002/pros.22495.CrossRefPubMedGoogle Scholar
  33. 33.
    Keller A, Leidinger P, Borries A, Wendschlag A, Wucherpfennig F, Scheffler M, et al. miRNAs in lung cancer—studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer. 2009;9:353. doi: 10.1186/1471-2407-9-353.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Griffiths-Jones S. miRBase: the microRNA sequence database. Methods Mol Biol. 2006;342:129–38.PubMedGoogle Scholar
  35. 35.
    D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(Database issue):D78–85. doi: 10.1093/nar/gkt1266.CrossRefPubMedGoogle Scholar
  37. 37.
    Bauer AS, Keller A, Costello E, Greenhalf W, Bier M, Borries A, et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS One. 2012;7(4), e34151. doi: 10.1371/journal.pone.0034151.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8. doi: 10.1056/NEJMoa0810084.CrossRefPubMedGoogle Scholar
  39. 39.
    O’Brien B, Nichaman L, Browne JE, Levin DL, Prorok PC, Gohagan JK, et al. Coordination and management of a large multicenter screening trial: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin Trials. 2000;21(6 Suppl):310S–28.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281(16):3766–75. doi: 10.1111/febs.12902.CrossRefPubMedGoogle Scholar
  41. 41.
    Paradowska A, Fenic I, Konrad L, Sturm K, Wagenlehner F, Weidner W, et al. Aberrant epigenetic modifications in the CTCF binding domain of the IGF2/H19 gene in prostate cancer compared with benign prostate hyperplasia. Int J Oncol. 2009;35(1):87–96.CrossRefPubMedGoogle Scholar
  42. 42.
    Berteaux N, Lottin S, Adriaenssens E, Van Coppenolle F, Leroy X, Coll J, et al. Hormonal regulation of H19 gene expression in prostate epithelial cells. J Endocrinol. 2004;183(1):69–78. doi: 10.1677/joe.1.05696.CrossRefPubMedGoogle Scholar
  43. 43.
    Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, et al. miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma. Annals of surgical oncology Suppl. 2013;20 Suppl 3:S625–35. doi: 10.1245/s10434-013-3106-3.CrossRefGoogle Scholar
  44. 44.
    Macleod KF. The RB, tumor suppressor: a gatekeeper to hormone independence in prostate cancer? J Clin Invest. 2010;120(12):4179–82. doi: 10.1172/JCI45406.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest. 2010;120(12):4478–92. doi: 10.1172/JCI44239.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Watahiki A, Wang Y, Morris J, Dennis K, O’Dwyer HM, Gleave M, et al. MicroRNAs associated with metastatic prostate cancer. PLoS One. 2011;6(9), e24950. doi: 10.1371/journal.pone.0024950.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Han ZD, Zhang YQ, He HC, Dai QS, Qin GQ, Chen JH, et al. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol. 2012;29(4):2877–88. doi: 10.1007/s12032-011-0149-9.CrossRefPubMedGoogle Scholar
  48. 48.
    Leav I, Plescia J, Goel HL, Li J, Jiang Z, Cohen RJ, et al. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol. 2010;176(1):393–401. doi: 10.2353/ajpath.2010.090521.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nguyen MC, Tu GH, Koprivnikar KE, Gonzalez-Edick M, Jooss KU, Harding TC. Antibody responses to galectin-8, TARP and TRAP1 in prostate cancer patients treated with a GM-CSF-secreting cellular immunotherapy. Cancer Immunol Immunother. 2010;59(9):1313–23. doi: 10.1007/s00262-010-0858-5.CrossRefPubMedGoogle Scholar
  50. 50.
    Daniels G, Jha R, Shen Y, Logan SK, Lee P. Androgen receptor coactivators that inhibit prostate cancer growth. Am J Clin Exp Urol. 2014;2(1):62–70.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate. 2011;71(6):604–14. doi: 10.1002/pros.21276.CrossRefPubMedGoogle Scholar
  52. 52.
    Pan CX, Kinch MS, Kiener PA, Langermann S, Serrero G, Sun L, et al. PC cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10(4):1333–7.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Petra Leidinger
    • 1
  • Martin Hart
    • 1
  • Christina Backes
    • 2
  • Stefanie Rheinheimer
    • 1
  • Bastian Keck
    • 3
  • Bernd Wullich
    • 3
  • Andreas Keller
    • 2
  • Eckart Meese
    • 1
  1. 1.Institute of Human GeneticsSaarland UniversityHomburgGermany
  2. 2.Chair for Clinical BioinformaticsSaarland UniversitySaarbrückenGermany
  3. 3.Department of UrologyUniversity Hospital ErlangenErlangenGermany

Personalised recommendations