Tumor Biology

, Volume 37, Issue 7, pp 9967–9977 | Cite as

Downregulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells

  • Saeedeh Ghazaey Zidanloo
  • Abasalt Hosseinzadeh Colagar
  • Hossein Ayatollahi
  • Jahan-Bakhsh Raoof
Original Article


The WT1 gene is an important oncogene, and its overexpression is considered as an effective target for anticancer therapy. Regulation of its gene transcription is one way for WT1-targeting drug design. Recently, in silico analysis of some oncogene promoters like WT1 showed some guanine-rich regions with the ability to form G-quadruplex structures. Ligands like 5,10,15,20-tetra(N-methyl-4-pyridyl)-porphine (TMPyP4) have predominant effect on G-quadruplex stabilization. The aim of this study was to understand the effect of TMPyP4 on WT1 gene transcription via stabilization of promoter G-quadruplexes. We examined the formation of new G-quadruplex motifs in WT1 promoter in the presence of TMPyP4. In order to understand the nature of its interaction with WT1 promoter quadruplexes, differential pulse voltammetry (DPV), circular dichroism (CD), polyacrylamide gel electrophoresis, electrophoretic mobility shift assay (EMSA), polymerase chain reaction (PCR) stop assays, and quantitative RT-PCR were performed. According to the results, the WT1 promoter can form stable intramolecular parallel G-quadruplexes. In addition, after 48 and 96 h of incubation, 100 μM TMPyP4 reduced the WT1 transcription to 9 and 0.4 %, respectively, compare to control. We report that ligand-mediated stabilization of G-quadruplexes within the WT1 promoter can silence WT1 expression. This study might offer the basis for the reasonable design and improvement of new porphyrin derivatives as effective anti-leukemia agents for cancer therapy.


WT1 promoter G-quadruplex stability TMPyP4 Downregulation of transcription 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Yang D, Okamoto K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem. 2010;2:619–46.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Punchihewa C, Yang D. Therapeutic targets and drugs II: G-quadruplex and G-quadruplex inhibitors. In: Hiyama K, editor. Telomeres and telomerase in cancer. Totowa: Humana Press; 2009.Google Scholar
  3. 3.
    Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie. 2008;90:1149–71. doi: 10.1016/j.biochi.2008.02.020.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kumari S, Bugaut A, Huppert JL, Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol. 2007;3:218–21. doi: 10.1038/nchembio864.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gehring K, Leroy JL, Guéron MA. Tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature. 1993;363:499–510. doi: 10.1038/363561a0.CrossRefGoogle Scholar
  6. 6.
    Engelhart AE, Plavec J, Persil, O, Hud, NV. Metal ion interactions with G-quadruplex structures. Nucleic Acid–Metal Ion Interactions. RSC Publishing; 2008. p. 118–147.Google Scholar
  7. 7.
    Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci. 2002;99:11593–8. doi: 10.1073/pnas.182256799.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sun D, Guo K, Rusche JJ, Hurley LH. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 2005;33:6070–80. doi: 10.1093/nar/gki917.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry. 2005;44:16341–50. doi: 10.1021/bi051618u.CrossRefPubMedGoogle Scholar
  10. 10.
    Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc. 2005;127:10584–9. doi: 10.1021/ja050823u.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, et al. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry. 2006;45:7854–60. doi: 10.1021/bi0601510.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosenfeld C, Cheever MA, Gaiger A. WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia. 2003;17:1301–12. doi: 10.1038/sj.leu.2402988.CrossRefPubMedGoogle Scholar
  13. 13.
    Neidle S, Balasubramanian S. Quadruplex nucleic acids. Eds. Royal Society of Chemistry. Cambridge, UK; 2006.Google Scholar
  14. 14.
    Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 2007;35:7429–55. doi: 10.1093/nar/gkm711.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ren J, Chaires JB. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry. 1999;38:16067–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Grand CL, Han H, Muñoz RM, Weitman S, Von Hoff DD, Hurley LH, et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther. 2002;1:565–73.PubMedGoogle Scholar
  17. 17.
    Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 2007;3:7698–713. doi: 10.1093/nar/gkm538.CrossRefGoogle Scholar
  18. 18.
    del Toro M, Bucek P, Aviñó A, Jaumot J, González C, Eritja R, et al. Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand. Biochimie. 2009;91:894–902. doi: 10.1016/j.biochi.2009.04.012.CrossRefPubMedGoogle Scholar
  19. 19.
    Nagesh N, Buscaglia R, Dettler JM, Lewis EA. Studies on the site and mode of TMPyP4 interactions with Bcl-2 promoter sequence G-quadruplexes. Biophys J. 2010;98:2628–33. doi: 10.1016/j.bpj.2010.02.050.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Manaye S, Eritja R, Aviñó A, Jaumot J, Gargallo R. Porphyrin binding mechanism is altered by protonation at the loops in G-quadruplex DNA formed near the transcriptional activation site of the human c-kit gene. Biochim Biophys Acta Gen Subj. 2012;1820:1987–96. doi: 10.1016/j.bbagen.2012.09.006.CrossRefGoogle Scholar
  21. 21.
    Cogoi S, Xodo LE. G-quadruplex formation within the promoter of the K-RAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 2006;34:2536–49. doi: 10.1093/nar/gkl286.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zidanloo SG, Hosseinzadeh Colagar A. Geographic heterogeneity of the AML1-ETO fusion gene in Iranian patients with acute myeloid leukemia. RBMB. 2014;3:1–7.Google Scholar
  23. 23.
    Shen H, Xu W, Wu Z, Tang H, Xie Y, Zhong X. Down-regulation of WT1/+ 17AA gene expression using RNAi and modulating leukemia cell chemotherapy resistance. Haematologica. 2007;92:1270–2.CrossRefPubMedGoogle Scholar
  24. 24.
    Glienke W, Maute L, Koehl U, Esser R, Milz E, Bergmann L. Effective treatment of leukemic cell lines with wt1 siRNA. Leukemia. 2007;21:2164–70. doi: 10.1038/sj.leu.2404878.CrossRefPubMedGoogle Scholar
  25. 25.
    Liu Y, Qu X, Wang P, Tian X, Luo Y, Liu S, et al. WT1 downregulation during K562 cell differentiation and apoptosis induced by bufalin. Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi. 2002;23:356–9.PubMedGoogle Scholar
  26. 26.
    Zapata-Benavides P, Tuna M, Lopez-Berestein G, Tari AM. Downregulation of Wilms’ tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun. 2002;295:784–90. doi: 10.1016/S0006-291X(02)00751-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Navakanit R, Graidist P, Leeanansaksiri W, Dechsukum C. Growth inhibition of breast cancer cell line MCF-7 by siRNA silencing of Wilms tumor 1 gene. J Med Assoc Thai. 2007;90:2416–21.PubMedGoogle Scholar
  28. 28.
    Clark AJ, Chan DC, Chen MY, Fillmore H, Dos Santos WG, Van Meter TE, et al. Down-regulation of Wilms’ tumor 1 expression in glioblastoma cells increases radiosensitivity independently of p53. J Neurooncol. 2007;83:163–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Zamora-Avila DE, Franco-Molina MA, Trejo-Avila LM, Rodríguez-Padilla C, Resendez-Perez D, Zapata-Benavides P. RNAi silencing of the WT1 gene inhibits cell proliferation and induces apoptosis in the B16F10 murine melanoma cell line. Melanoma Res. 2007;17:341–8. doi: 10.1097/CMR.0b013e3282efd3ae.CrossRefPubMedGoogle Scholar
  30. 30.
    Wagner N, Panelos J, Massi D, Wagner KD. The Wilms’ tumor suppressor WT1 is associated with melanoma proliferation. Pflugers Arch. 2008;455:839–47. doi: 10.1007/s00424-007-0340-1.CrossRefPubMedGoogle Scholar
  31. 31.
    Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T, et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia. 2005;19:1416–23. doi: 10.1038/sj.leu.2403809.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang R, Lin Y, Zhang CT. Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res. 2008;36:D372–6. doi: 10.1093/nar/gkm787.CrossRefPubMedGoogle Scholar
  33. 33.
    Fraizer GC, Wu YJ, Hewitt SM, Maity T, Ton CC, Huff V, et al. Transcriptional regulation of the human Wilms’ tumor gene (WT1). Cell type-specific enhancer and promiscuous promoter. J Biol Chem. 1994;269:8892–900.PubMedGoogle Scholar
  34. 34.
    Lemarteleur T, Gomez D, Paterski R, Mandine E, Mailliet P, Riou JF. Stabilization of the c-myc gene promoter quadruplex by specific ligands’ inhibitors of telomerase. Biochem Biophys Res Commun. 2004;323:802–8. doi: 10.1016/j.bbrc.2004.08.150.CrossRefPubMedGoogle Scholar
  35. 35.
    Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.PubMedGoogle Scholar
  36. 36.
    Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16:2115–21. doi: 10.1038/sj.leu.2402675.CrossRefPubMedGoogle Scholar
  38. 38.
    Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.PubMedGoogle Scholar
  39. 39.
    Green MR, Sambrook J. Molecular cloning a laboratory manual. 4th ed. New York: Cold Spring Harbor Laboratory Press; 2012.Google Scholar
  40. 40.
    Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–82. doi: 10.1093/nar/gkl253.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chiorcea-Paquim AM, Santos PV, Eritja R, Oliveira-Brett AM. Self-assembled G-quadruplex nanostructures: AFM and voltammetric characterization. Phys Chem Chem Phys. 2013;15:9117–24. doi: 10.1039/c3cp50866h.CrossRefPubMedGoogle Scholar
  42. 42.
    Miyoshi D, Nakao A, Sugimoto N. Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Res. 2003;31:1156–63.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hurley LH. Secondary DNA, structures as molecular targets for cancer therapeutics. Biochem Soc Trans. 2001;29:692–6. doi: 10.1042/bst0290692.CrossRefPubMedGoogle Scholar
  44. 44.
    Sun D, Liu WJ, Guo K, Rusche JJ, Ebbinghaus S, Gokhale V, et al. The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex–interactive agents. Mol Cancer Ther. 2008;7:880–9. doi: 10.1158/1535-7163.MCT-07-2119.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Han H, Langley DR, Rangan A, Hurley LH. Selective interactions of cationic porphyrins with G-quadruplex structures. J Am Chem Soc. 2001;123:8902–13. doi: 10.1021/ja002179j.CrossRefPubMedGoogle Scholar
  46. 46.
    Taka T, Joonlasak K, Huang L, Randall Lee T, Chang SW, Tuntiwechapikul W. Down-regulation of the human VEGF gene expression by perylene monoimide derivatives. Bioorg Med Chem Lett. 2012;22:518–22. doi: 10.1016/j.bmcl.2011.10.089.CrossRefPubMedGoogle Scholar
  47. 47.
    Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84:3071–9.PubMedGoogle Scholar
  48. 48.
    Dailey L, Hanly SM, Roeder RG, Heintz N. Distinct transcription factors bind specifically to two regions of the human histone H4 promoter. Proc Natl Acad Sci U S A. 1986;83:7241–5.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dailey L, Roberts SB, Heintz N. Purification of the human histone H4 gene-specific transcription factors H4TF-1 and H4TF-2. Genes Dev. 1988;2:1700–12. doi: 10.1101/gad.2.12b.1700.CrossRefPubMedGoogle Scholar
  50. 50.
    Nakken S, Rognes T, Hovig E. The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts. Nucleic Acids Res. 2009;37:5749–56. doi: 10.1093/nar/gkp590.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Huppert JL. Hunting G-quadruplexes. Biochimie. 2008;90:1140–8. doi: 10.1016/j.biochi.2008.01.014.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Saeedeh Ghazaey Zidanloo
    • 1
  • Abasalt Hosseinzadeh Colagar
    • 1
    • 2
  • Hossein Ayatollahi
    • 3
  • Jahan-Bakhsh Raoof
    • 2
    • 4
  1. 1.Department of Molecular and Cell Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
  2. 2.Nano and Biotechnology Research Group, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
  3. 3.Cancer Molecular Pathology Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Eletroanalytical Chemistry Research Laboratory, Analytical Chemistry Department of Faculty of ChemistryMazandaran UniversityBabolsarIran

Personalised recommendations