Skip to main content

The role of oxidative stress on breast cancer development and therapy

Abstract

Reactive oxygen species (ROS) are produced by both enzymatic and non-enzymatic systems within eukaryotic cells and play important roles in cellular physiology and pathophysiology. Although physiological concentrations are crucial for ensuring cell survival, ROS overproduction is detrimental to cells, and considered key-factors for the development of several diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Cancer cells are usually submitted to higher ROS levels that further stimulate malignant phenotype through stimulus to sustained proliferation, death evasion, angiogenesis, invasiveness, and metastasis. The role of ROS on breast cancer etiology and progression is being progressively elucidated. However, less attention has been given to the development of redox system-targeted strategies for breast cancer therapy. In this review, we address the basic mechanisms of ROS production and scavenging in breast tumor cells, and the emerging possibilities of breast cancer therapies targeting ROS homeostasis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;4:C849–68.

    Article  Google Scholar 

  2. Halliwell B, Gutteridge J. Free radicals in biology and medicine. 4th ed. Oxford University Press; 2007.

  3. Liochev SI. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med. 2013;60:1–4.

    CAS  Article  PubMed  Google Scholar 

  4. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    CAS  Article  PubMed  Google Scholar 

  5. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12:376–90.

    CAS  Article  PubMed  Google Scholar 

  6. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.

    CAS  Article  PubMed  Google Scholar 

  7. Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer J Int Du Cancer. 2007;121:2381–6.

    CAS  Article  Google Scholar 

  8. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    CAS  Article  PubMed  Google Scholar 

  9. Finkel T. Signal transduction by mitochondrial oxidants. J Biol Chem. 2012;287:4434–40.

    CAS  Article  PubMed  Google Scholar 

  10. Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16:1323–67.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Nohl H, Gille L, Kozlov A, Staniek K. Are mitochondria a spontaneous and permanent source of reactive oxygen species? Redox Rep : Commun Free Radic Res. 2003;8:135–41.

    CAS  Article  Google Scholar 

  12. Meng T, Lou Y, Chen Y, Hsu S, Huang Y. Cys-oxidation of protein tyrosine phosphatases: its role in regulation of signal transduction and its involvement in human cancers. J Cancer Mol. 2006;2:9–16.

    CAS  Google Scholar 

  13. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    CAS  Article  PubMed  Google Scholar 

  14. Wood ZA, Schröder E, Harris JR, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.

    CAS  Article  PubMed  Google Scholar 

  15. Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited. Annu Rev Pathol. 2014;9:119–45.

    CAS  Article  PubMed  Google Scholar 

  16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  Article  PubMed  Google Scholar 

  17. Weitzman SA, Gordon LI. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990;76:655–63.

    CAS  PubMed  Google Scholar 

  18. Bakhoum SF, Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest. 2012;122:1138–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17:1195–214.

    CAS  Article  PubMed  Google Scholar 

  20. de Oliveira MF, Amoêdo ND, Rumjanek FD. Energy and redox homeostasis in tumor cells. Int J Cell Biol. 2012;2012:593838.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ameziane-El-Hassani R, Boufraqech M, Lagente-Chevallier O, Weyemi U, Talbot M, Métivier D, et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res. 2010;70:4123–32.

    CAS  Article  PubMed  Google Scholar 

  22. Stone JR, Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal. 2006;8:243–70.

    CAS  Article  PubMed  Google Scholar 

  23. Gao N, Jiang BH, Leonard SS, Corum L, Zhang Z, Roberts JR, et al. p38 signaling-mediated hypoxia-inducible factor 1alpha and vascular endothelial growth factor induction by Cr(VI) in DU145 human prostate carcinoma cells. J Biol Chem. 2002;277:45041–8.

    CAS  Article  PubMed  Google Scholar 

  24. Bae GU, Seo DW, Kwon HK, Lee HY, Hong S, Lee ZW, et al. Hydrogen peroxide activates p70S6k signaling pathway. J Biol Chem. 1999;274:32596–602.

    CAS  Article  PubMed  Google Scholar 

  25. Natarajan V, Taher MM, Roehm B, Parinandi NL, Schmid HH, Kiss Z, et al. Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem. 1993;268:930–7.

    CAS  PubMed  Google Scholar 

  26. Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998;275:C1640–52.

    CAS  PubMed  Google Scholar 

  27. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol. 2008;181:1129–39.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Downward J. Targeting RAS, signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    CAS  Article  PubMed  Google Scholar 

  29. Gebremedhin D, Terashvili M, Wickramasekera N, Zhang DX, Rau N, Miura H, et al. Redox signaling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries. PLoS One. 2013;8:e68498.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A. 2004;101:16419–24.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Niecknig H, Tug S, Reyes BD, Kirsch M, Fandrey J, Berchner-Pfannschmidt U. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic Res. 2012;46:705–17.

    CAS  Article  PubMed  Google Scholar 

  32. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez M, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–8.

    CAS  Article  PubMed  Google Scholar 

  33. Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E, et al. HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 2011;51:893–904.

    CAS  Article  PubMed  Google Scholar 

  34. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A. 2002;99:715–20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Coso S, Harrison I, Harrison CB, Vinh A, Sobey CG, Drummond GR, et al. NADPH oxidases as regulators of tumor angiogenesis: current and emerging concepts. Antioxid Redox Signal. 2012;16:1229–47.

    CAS  Article  PubMed  Google Scholar 

  36. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10(10):955–60.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Musarrat J, Arezina-Wilson J, Wani AA. Prognostic and aetiological relevance of 8-hydroxyguanosine in human breast carcinogenesis. Eur J Cancer. 1996;32A:1209–14.

    CAS  Article  PubMed  Google Scholar 

  38. Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta. 1815;2011:115–33.

    Google Scholar 

  39. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000;27:75–93.

    CAS  Article  Google Scholar 

  40. Roy D, Liehr JG. Estrogen, DNA damage and mutations. Mutat Res. 1999;424:107–15.

    CAS  Article  PubMed  Google Scholar 

  41. Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO. Epigenetic reactivation of estrogen receptor-a (ERa) by genistein enhances hormonal therapy sensitivity in ERa-negative breast cancer. Mol Cancer. 2013;12:9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res Treat. 2015;153(1):41–56.

    CAS  Article  PubMed  Google Scholar 

  43. Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, et al. Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med. 2006;41:226–37.

    CAS  Article  PubMed  Google Scholar 

  44. Hitchler MJ, Wikainapakul K, Yu L, Powers K, Attatippaholkun W, Domann FE. Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics: Off J DNA Methylation Soc. 2006;1:163–71.

    Article  Google Scholar 

  45. Yuzefovych LV, Kahn AG, Schuler MA, Eide L, Arora R, Wilson GL, et al. Mitochondrial DNA repair through OGG1 activity attenuates breast cancer progression and metastasis. Cancer Res. 2016;76(1):30–4.

    CAS  Article  PubMed  Google Scholar 

  46. Papa L, Hahn M, Marsh EL, Evans BS, Germain D. SOD2 to SOD1 switch in breast cancer. J Biol Chem. 2014;289:5412–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Lim JC, You Z, Kim G, Levine RL. Methionine sulfoxide reductase A is a stereospecific methionine oxidase. Proc Natl Acad Sci U S A. 2011;108:10472–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 2015;27(2):211–22.

    CAS  Article  PubMed  Google Scholar 

  49. Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med. 2015;79:292–9.

    CAS  Article  PubMed  Google Scholar 

  50. Onodera Y, Motohashi H, Takagi K, Miki Y, Shibahara Y, Watanabe M, et al. NRF2 immunolocalization in human breast cancer patients as a prognostic factor. Endocr Relat Cancer. 2014;27:241–52.

    Article  Google Scholar 

  51. Zhong Y, Zhang F, Sun Z, Zhou W, Li ZY, You QD, et al. Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol Carcinog. 2013;52:824–34.

    CAS  Article  PubMed  Google Scholar 

  52. Kim SK, Yang JW, Kim MR, Roh SH, Kim HG, Lee KY, et al. Increased expression of Nrf2/ARE-dependent anti-oxidant proteins in tamoxifen-resistant breast cancer cells. Free Radic Biol Med. 2008;45:537–46.

    CAS  Article  PubMed  Google Scholar 

  53. Khatri R, Shah P, Guha R, Rassool FV, Tomkinson AE, Brodie A, et al. Aromatase inhibitor-mediated downregulation of INrf2 (Keap1) leads to increased Nrf2 and resistance in breast cancer. Mol Cancer Ther. 2015;14(7):1728–37.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS, et al. HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep. 2014;3:7201.

    Google Scholar 

  55. Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K, Tavtigian S, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science. 1994;266:120–2.

    CAS  Article  PubMed  Google Scholar 

  56. Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxidative Med Cell Longev. 2010;3:23–34.

    Article  Google Scholar 

  57. Saha T, Rih JK, Rosen EM. BRCA1 down-regulates cellular levels of reactive oxygen species. FEBS Lett. 2009;583:1535–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med. 2013;210:1529–44.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;14:52–67.

    Article  Google Scholar 

  60. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    CAS  Article  PubMed  Google Scholar 

  61. Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci. 2008;29:22–8.

    CAS  Article  PubMed  Google Scholar 

  62. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6:764–75.

    CAS  Article  PubMed  Google Scholar 

  63. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24:241–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Wyckoff JB, Wang Y, Lin EY, Li JF, Goswami S, Stanley ER, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67:2649–56.

    CAS  Article  PubMed  Google Scholar 

  66. Tobar N, Guerrero J, Smith PC, Martínez J. NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration. Br J Cancer. 2010;103:1040–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Martinez-Outschoorn UE, Balliet RM, Rivadeneira D, Chiavarina B, Pavlides S, Wang C, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. Cell Cycle. 2010;9:3276–96.

    Article  Google Scholar 

  68. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, et al. Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle. 2011;10:2504–20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL. Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med. 2012;53:1–11.

    Article  Google Scholar 

  70. Radisky DC. Epithelial-mesenchymal transition. J Cell Sci. 2005;118:4325–6.

    CAS  Article  PubMed  Google Scholar 

  71. Giannoni E, Parri M, Chiarugi P. EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal. 2012;16:1248–63.

    CAS  Article  PubMed  Google Scholar 

  72. Boudreau HE, Casterline BW, Burke DJ, Leto TL. Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells. Br J Cancer. 2014;110:2569–82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst. 1993;85:1483–92.

    CAS  Article  PubMed  Google Scholar 

  74. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The alpha-tocopherol, the effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994;330:1029–35.

    Article  Google Scholar 

  75. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. 1996;88:1550–9.

    CAS  Article  PubMed  Google Scholar 

  76. Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;29:221ra15.

    Article  Google Scholar 

  77. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301:39–51.

    CAS  Article  PubMed  Google Scholar 

  78. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JMO, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.

    Article  PubMed  Google Scholar 

  79. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, et al. The SU.VI.MAX study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med. 2004;164:2335–42.

    CAS  Article  PubMed  Google Scholar 

  80. Greenlee H, Hershman DL, Jacobson JS. Use of antioxidant supplements during breast cancer treatment: a comprehensive review. Breast Cancer Res Treat. 2009;115:437–52.

    CAS  Article  PubMed  Google Scholar 

  81. Uetaki M, Tabata S, Nakasuka F, Soga T, Tomita M. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress. Sci Rep. 2015;5:13896.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature. 2011;475(7355):231–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Pons DG, Nadal-Serrano M, Torrens-Mas M, Valle A, Oliver J, Roca P. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free Radic Biol Med. 2015;86:67–77.

    CAS  Article  PubMed  Google Scholar 

  84. Theriault RL, Carlson RW, Allred C, Anderson BO, Burstein HJ, Edge SB, et al. Breast cancer, version 3.2013: featured updates to the NCCN guidelines. J Natl Compr Cancer Netw. 2013;11:753–60.

    CAS  Google Scholar 

  85. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256:42–9.

    CAS  Article  PubMed  Google Scholar 

  86. Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 2011;3:1351–71.

    CAS  Article  Google Scholar 

  87. Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Gersl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep. 2009;61:154–71.

    Article  PubMed  Google Scholar 

  88. Narayanan P, Goodwin E, Lehnert B. α-particles initiate biological production of superoxide anions and hydrogen peroxide. Cancer Res. 1997;57:3963–71.

    CAS  PubMed  Google Scholar 

  89. Crow JP. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide. 1997;1:145–57.

    CAS  Article  PubMed  Google Scholar 

  90. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 2001;61:3894–901.

    CAS  PubMed  Google Scholar 

  91. Kim GJ, Fiskum GM, Morgan WF. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability. Cancer Res. 2006;66:10377–83.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Marder BA, Morgan WF. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol. 1993;13:6667–77.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Watson GE, Lorimore SA, Macdonald DA, Wright EG. Chromosomal instability in unirradiated cells induced in vivo by a bystander effect of ionizing radiation. Cancer Res. 2000;60:5608–11.

    CAS  PubMed  Google Scholar 

  94. Tulard A, Hoffschir F, de Boisferon FH, Luccioni C, Bravard A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Radic Biol Med. 2003;35:68–77.

    CAS  Article  PubMed  Google Scholar 

  95. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263:17205–8.

    CAS  PubMed  Google Scholar 

  96. Nishimura T, Newkirk K, Sessions RB, Andrews PA, Trock BJ, Rasmussen AA, et al. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin Cancer Res. 1996;2:1859–65.

    CAS  PubMed  Google Scholar 

  97. Lewis-Wambi JS, Kim HR, Wambi C, Patel R, Pyle JR, Klein-Szanto AJ, et al. Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res. 2008;10:R104.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rudin CM, Yang Z, Schumaker LM, VanderWeele DJ, Newkirk K, Egorin MJ, et al. Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res. 2003;63:312–8.

    CAS  PubMed  Google Scholar 

  99. Montero AJ, Diaz-Montero CM, Deutsch YE, Hurley J, Koniaris LG, Rumboldt T, et al. Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res Treat. 2012;132:215–23.

    CAS  Article  PubMed  Google Scholar 

  100. Gumireddy K, Li A, Cao L, Yan J, Liu L. NOV-002, a glutathione disulfide mimetic, suppresses tumor cell invasion and metastasis. J Carcinog Mutagen. 2013;7:997–1003.

    Google Scholar 

  101. Bin Wang J, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo S. Fortunato.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hecht, F., Pessoa, C.F., Gentile, L.B. et al. The role of oxidative stress on breast cancer development and therapy. Tumor Biol. 37, 4281–4291 (2016). https://doi.org/10.1007/s13277-016-4873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4873-9

Keywords

  • Breast cancer
  • Reactive oxygen species
  • Antioxidant enzymes
  • Oxidative stress