Tumor Biology

, Volume 37, Issue 7, pp 9483–9491 | Cite as

Expression and prognostic value of miR-92a in patients with gastric cancer

  • Chuanli Ren
  • Wenshu Wang
  • Chongxu Han
  • Hui Chen
  • Deyuan Fu
  • Yulin Luo
  • Hanyu Yao
  • Daxin Wang
  • Li Ma
  • Lin Zhou
  • Dongsheng Han
  • Ming Shen
Original Article


MicroRNA (miR)-92 expression is often aberrant in human cancers. However, its expression in gastric carcinoma and its relation to clinicopathological features and prognosis are unclear.

Tissue microarrays were constructed from 180 patients with gastric cancer (GC), who were undergoing radical resection. MiR-92a expression was detected using miRNA-locked nucleic acid in situ hybridization, and its correlation with clinicopathological features and overall survival was analyzed. MiR-92a expression was decreased in 13.9 % (25/180) of GC, increased in 81.1 % (146/180), and unchanged in 5.0 % (9/180), compared with paracancerous normal tissue (P < 0.001). Univariate analysis showed that high miR-92a expression, tumor stage, tumor status, node status, and tumor size were significant negative prognostic predictors for overall survival in patients with GC (P < 0.001, P < 0.001, P = 0.008, P < 0.001, and P = 0.001, respectively). High miR-92a expression still remained a significant predictor of shorter survival in stage II (n = 56, P = 0.001) and stage III (n = 92, P = 0.009) GC. Multivariate regression analysis demonstrated that tumor status (hazard ratio [HR], 3.10; 95 % confidence interval [CI], 1.51–6.37; P = 0.002), stage (HR, 3.54; 95 % CI, 1.65–7.63; P = 0.000), lymph node metastasis (HR, 2.83; 95 % CI, 1.88–4.28; P = 0.000), high expression of miR-92a (HR, 2.94; 95 % CI, 2.01–4.31; P = 0.000), and tumor size (HR, 2.34; 95 % CI, 1.45–3.79; P = 0.002) predicted shorter OS.

High expression of miR-92a compared with adjacent normal tissues was associated with shorter OS. MiR-92a may thus be useful for evaluating prognosis and may provide a novel treatment target in patients with GC.


Gastric cancer (GC) MiR-92a 



This study was supported by the National Nature Science Foundation of China (81573220), Jiangsu provincial Six Talent Peaks (WSN107), the Foundation of China Postdoctoral Studies (M2013541699), the Foundation of Jiangsu Province Postdoctoral Studies (1302149C), and the Foundation for Yong Scholar in Yangzhou (YZ2014046).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  2. 2.
    Network. CGAR. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.CrossRefGoogle Scholar
  3. 3.
    Wadhwa R, Song S, Lee JS, Yao Y, Wei Q, Ajani JA. Gastric cancer—molecular and clinical dimensions. Nat Rev Clin Oncol. 2013;10:643–55.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen H, Ren C, Han C, Wang D, Chen Y, Fu D. Expression and prognostic value of miR-486-5p in patients with gastric adenocarcinoma. PLoS One. 2015;10, e0119384.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132:4653–62.CrossRefPubMedGoogle Scholar
  7. 7.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Song S, Ajani JA. The role of microRNAs in cancers of the upper gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2013;10:109–18.CrossRefPubMedGoogle Scholar
  10. 10.
    Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010;11:136–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhu C, Ren C, Han J, Ding Y, Du J, Dai N, et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110:2291–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang X, Cui L, Ye G, Zheng T, Song H, Xia T, et al. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. 2012;33:2349–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Yu X, Luo L, Wu Y, Yu X, Liu Y, Yu X, et al. Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med Oncol. 2013;30:365.CrossRefPubMedGoogle Scholar
  14. 14.
    Cui L, Zhang X, Ye G, Zheng T, Song H, Deng H, et al. Gastric juice microRNAs as potential biomarkers for the screening of gastric cancer. Cancer. 2013;119:1618–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Kogo R, Mimori K, Tanaka F, Komune S, Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin Cancer Res. 2011;17:4277–84.CrossRefPubMedGoogle Scholar
  16. 16.
    Rotkrua P, Shimada S, Mogushi K, Akiyama Y, Tanaka H, Yuasa Y. Circulating microRNAs as biomarkers for early detection of diffuse-type gastric cancer using a mouse model. Br J Cancer. 2013;108:932–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ishimoto T, Baba H, Izumi D, Sugihara H, Kurashige J, Iwatsuki M, et al. Current perspectives towards the identification of key players in gastric cancer microRNA dysregulation. Int J Cancer 2015.Google Scholar
  18. 18.
    Su X, Wang H, Ge W, Yang M, Hou J, Chen T, et al. An in vivo method to identify microRNA targets not predicted by computation algorithms: p21 targeting by miR-92a in cancer. Cancer Res. 2015;75:2875–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Wu Q, Yang Z, Wang F, Hu S, Yang L, Shi Y, et al. MiR-19b/20a/92a regulates the self-renewal and proliferation of gastric cancer stem cells. J Cell Sci. 2013;126:4220–9.CrossRefPubMedGoogle Scholar
  20. 20.
    He C, Jiang H, Geng S, Sheng H, Shen X, Zhang X, et al. Expression and prognostic value of c-Myc and Fas (CD95/APO1) in patients with pancreatic cancer. Int J Clin Exp Pathol. 2014;7:742–50.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010;9:229.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yuva-Aydemir Y, Xu XL, Aydemir O, Gascon E, Sayin S, Zhou W, et al. Downregulation of the host gene jigr1 by miR-92 is essential for neuroblast self-renewal in Drosophila. PLoS Genet. 2015;11, e1005264.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zou H, Ding Y, Wang K, Xiong E, Peng W, Du F, et al. MicroRNA-29A/PTEN pathway modulates neurite outgrowth in PC12 cells. Neuroscience. 2015;291:289–300.CrossRefPubMedGoogle Scholar
  25. 25.
    Ke TW, Wei PL, Yeh KT, Chen WT, Cheng YW. MiR-92a promotes cell metastasis of colorectal cancer through PTEN-mediated PI3K/AKT pathway. Ann Surg Oncol 2015.Google Scholar
  26. 26.
    Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 2014;59:98–107.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhou C, Shen L, Mao L, Wang B, Li Y, Yu H. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun. 2015;458:63–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Lv XB, Zhang X, Deng L, Jiang L, Meng W, Lu Z, et al. MiR-92a mediates AZD6244 induced apoptosis and G1-phase arrest of lymphoma cells by targeting Bim. Cell Biol Int. 2014;38:435–43.CrossRefPubMedGoogle Scholar
  29. 29.
    He G, Zhang L, Li Q, Yang L. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomed Pharmacother. 2014;68:25–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin HY, Chiang CH, Hung WC. STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br J Cancer. 2013;109:731–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohyagi-Hara C, Sawada K, Kamiura S, Tomita Y, Isobe A, Hashimoto K, et al. miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin alpha5 expression. Am J Pathol. 2013;182:1876–89.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen ZL, Zhao XH, Wang JW, Li BZ, Wang Z, Sun J, et al. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem. 2011;286:10725–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Li M, Guan X, Sun Y, Mi J, Shu X, Liu F, et al. miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res. 2014;323:1–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Shigoka M, Tsuchida A, Matsudo T, Nagakawa Y, Saito H, Suzuki Y, et al. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol Int. 2010;60:351–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Yamada N, Nakagawa Y, Tsujimura N, Kumazaki M, Noguchi S, Mori T, et al. Role of intracellular and extracellular microRNA-92a in colorectal cancer. Transl Oncol. 2013;6:482–92.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, et al. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. 2015;137:1679–90.CrossRefPubMedGoogle Scholar
  37. 37.
    Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798–807.CrossRefPubMedGoogle Scholar
  38. 38.
    Zavesky L, Jandakova E, Turyna R, Langmeierova L, Weinberger V, Zaveska Drabkova L, et al. Evaluation of cell-free urine microRNAs expression for the use in diagnosis of ovarian and endometrial cancers. A pilot study. Pathol Oncol Res 2015.Google Scholar
  39. 39.
    Wang J, Huang SK, Zhao M, Yang M, Zhong JL, Gu YY, et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS One. 2014;9, e87451.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chan M, Liaw CS, Ji SM, Tan HH, Wong CY, Thike AA, et al. Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res. 2013;19:4477–87.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu GH, Zhou ZG, Chen R, Wang MJ, Zhou B, Li Y, et al. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol. 2013;34:2175–81.CrossRefPubMedGoogle Scholar
  42. 42.
    Faltejskova P, Bocanek O, Sachlova M, Svoboda M, Kiss I, Vyzula R, et al. Circulating miR-17-3p, miR-29a, miR-92a and miR-135b in serum: evidence against their usage as biomarkers in colorectal cancer. Cancer Biomark. 2012;12:199–204.CrossRefPubMedGoogle Scholar
  43. 43.
    Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26.CrossRefPubMedGoogle Scholar
  44. 44.
    Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61:739–45.CrossRefPubMedGoogle Scholar
  45. 45.
    Nilsson S, Moller C, Jirstrom K, Lee A, Busch S, Lamb R, et al. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One. 2012;7, e36051.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ozen A, Kocak Z, Sipahi T, Oz-Puyan F, Cakina S, Saynak M, et al. The prognostic significance of p21 and Her-2 gene expression and mutation/polymorphism in patients with gastric adenocarcinoma. Med Oncol. 2013;30:357.CrossRefPubMedGoogle Scholar
  47. 47.
    Yang C, Ma X, Liu D, Wang Y, Tang R, Zhu Y, et al. Promoter polymorphisms of miR-34b/c are associated with risk of gastric cancer in a Chinese population. Tumour Biol. 2014;35:12545–54.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Chuanli Ren
    • 1
    • 6
  • Wenshu Wang
    • 2
  • Chongxu Han
    • 1
  • Hui Chen
    • 3
  • Deyuan Fu
    • 4
  • Yulin Luo
    • 4
  • Hanyu Yao
    • 4
  • Daxin Wang
    • 1
  • Li Ma
    • 5
  • Lin Zhou
    • 1
  • Dongsheng Han
    • 1
  • Ming Shen
    • 2
  1. 1.Clinical Medical Testing LaboratoryNorthern Jiangsu People’s Hospital and Clinical Medical College of Yangzhou UniversityYangzhouChina
  2. 2.Department of Physical ChemistryYangzhou UniversityYangzhouChina
  3. 3.Geriatric MedicineNorthern Jiangsu People’s Hospital and Clinical Medical College of Yangzhou UniversityYangzhouChina
  4. 4.Breast Oncology SurgeryNorthern Jiangsu People’s Hospital and Clinical Medical College of Yangzhou UniversityYangzhouChina
  5. 5.Lab of HematologyNorthern Jiangsu People’s Hospital and Clinical Medical College of Yangzhou UniversityYangzhouChina
  6. 6.Department of Epidemiology and Biostatistics, Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public HealthNanjing Medical UniversityNanjingChina

Personalised recommendations