Tumor Biology

, Volume 37, Issue 7, pp 9615–9624 | Cite as

Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway

  • Kyoung Ah Kang
  • Mei Jing Piao
  • Susara Ruwan Kumara Madduma Hewage
  • Yea Seong Ryu
  • Min Chang Oh
  • Taeg Kyu Kwon
  • Sungwook Chae
  • Jin Won Hyun
Original Article

Abstract

Fisetin (3,3′,4′,7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca2+ overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

Keywords

Fisetin Human non-small cell lung cancer Apoptosis Reactive oxygen species ER stress MAPK signaling pathway 

Notes

Acknowledgments

This work was supported by Grant from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2010042).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215–90.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brem GJ, Mylonas I, Brüning A. Eeyarestatin causes cervical cancer cell sensitization to bortezomib treatment by augmenting ER stress and CHOP expression. Gynecol Oncol. 2013;128:383–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Cullinan SB, Diehl JA. Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol. 2006;38:317–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 2002;415:92–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Morishima N, Nakanishi K, Nakano A. Activating transcription factor-6 (ATF6) mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. J Biol Chem. 2011;286:35227–35.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 2004;11:372–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Darling NJ, Cook SJ. The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta. 1843;2014:2150–63.Google Scholar
  8. 8.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang L, Xiong Y, Sun Y, Fang Z, Li L, Ji H, et al. HLungDB: an integrated database of human lung cancer research. Nucleic Acids Res. 2010;38:665–9.CrossRefGoogle Scholar
  10. 10.
    Carbone DP, Felip E. Adjuvant therapy in non-small cell lung cancer: future treatment prospects and paradigms. Clin Lung Cancer. 2011;12:261–71.CrossRefPubMedGoogle Scholar
  11. 11.
    Früh M. The search for improved systemic therapy of non-small cell lung cancer—what are today’s options? Lung Cancer. 2011;72:265–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Harvey AL. Natural products in drug discovery. Drug Discov Today. 2008;13:894–901.CrossRefPubMedGoogle Scholar
  13. 13.
    Seo HS, Sikder MA, Lee HJ, Ryu J, Lee CJ. Apigenin inhibits tumor necrosis factor-alpha-induced production and gene expression of mucin through regulating nuclear factor-kappa B signaling pathway in airway epithelial cells. Biomol Ther. 2014;22:525–31.Google Scholar
  14. 14.
    Nishiumi S, Miyamoto S, Kawabata K, Ohnishi K, Mukai R, Murakami A, et al. Dietary flavonoids as cancer-preventive and therapeutic biofactors. Front Biosci. 2011;3:1332–62.CrossRefGoogle Scholar
  15. 15.
    Jo SK, Hong JY, Park HJ, Lee SK. Anticancer activity of novel daphnane diterpenoids from Daphne genkwa through cell-cycle arrest and suppression of Akt/STAT/Src signalings in human lung cancer cells. Biomol Ther. 2012;20:513–9.CrossRefGoogle Scholar
  16. 16.
    Kim EJ, Kim HJ, Park MK, Kang GJ, Byun HJ, Lee H, et al. Cardamonin suppresses TGF-beta1-induced epithelial mesenchymal transition via restoring protein phosphatase 2A expression. Biomol Ther. 2015;23:141–8.CrossRefGoogle Scholar
  17. 17.
    Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19:151–62.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kang KA, Piao MJ, Kim KC, Cha JW, Zheng J, Yao CW, et al. Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system. In Vitro Cell Dev Biol Anim. 2014;50:66–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A. 2006;103:16568–73.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol. 2007;71:1703–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, et al. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol. 2011;108:84–93.CrossRefPubMedGoogle Scholar
  22. 22.
    Noh EM, Park YJ, Kim JM, Kim MS, Kim HR, Song HK, et al. Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways. Eur J Pharmacol. 2015;764:79–86.CrossRefPubMedGoogle Scholar
  23. 23.
    Kang KA, Piao MJ, Hyun JW. Fisetin induces apoptosis in human non-small lung cancer cells via a mitochondria-mediated pathway. In Vitro Cell Dev Biol Anim. 2015;51:300–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Ju SM, Youn GS, Cho YS, Choi SY, Park J. Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells. BMB Rep. 2015;48:172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Shehzad A, Lee J, Lee YS. Autocrine prostaglandin E2 signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway. BMB Rep. 2015;48:109–14.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dolai S, Pal S, Yadav RK, Adak S. Endoplasmic reticulum stress-induced apoptosis in Leishmania through Ca2+-dependent and caspase-independent mechanism. J Biol Chem. 2011;286:13638–46.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Abdelrahim M, Newman K, Vanderlaag K, Samudio I, Safe S. 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis. 2006;27:717–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Park GB, Kim YS, Lee HK, Song H, Cho DH, Lee WJ, et al. Endoplasmic reticulum stress-mediated apoptosis of EBV-transformed B cells by cross-linking of CD70 is dependent upon generation of reactive oxygen species and activation of p38 MAPK and JNK pathway. J Immunol. 2010;185:7274–84.CrossRefPubMedGoogle Scholar
  30. 30.
    Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Investig Dermatol. 2011;131:1291–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Syed DN, Chamcheu JC, Khan MI, Sechi M, Lall RK, Adhami VM, et al. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling. Biochem Pharmacol. 2014;89:349–60.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liao YC, Shih YW, Chao CH, Lee XY, Chiang TA. Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J Agric Food Chem. 2009;57:8933–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Khan N, Afaq F, Khusro FH, Mustafa Adhami V, Suh Y, Mukhtar H. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer. 2012;130:1695–705.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim A. A panoramic overview of mitochondria and mitochondrial redox biology. Toxicol Res. 2014;30:221–34.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Kyoung Ah Kang
    • 1
  • Mei Jing Piao
    • 1
  • Susara Ruwan Kumara Madduma Hewage
    • 1
  • Yea Seong Ryu
    • 1
  • Min Chang Oh
    • 1
  • Taeg Kyu Kwon
    • 2
  • Sungwook Chae
    • 3
  • Jin Won Hyun
    • 1
  1. 1.Department of Biochemistry, School of MedicineJeju National UniversityJejuRepublic of Korea
  2. 2.Department of Immunology, School of MedicineKeimyung UniversityDaeguRepublic of Korea
  3. 3.Aging Research CenterKorea Institute of Oriental MedicineDaejeonRepublic of Korea

Personalised recommendations