Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 9721–9730 | Cite as

Long noncoding RNA H19 contributes to gallbladder cancer cell proliferation by modulated miR-194-5p targeting AKT2

  • Shou-Hua Wang
  • Xiao-Cai Wu
  • Ming-Di Zhang
  • Ming-Zhe Weng
  • Di Zhou
  • Zhi-Wei Quan
Original Article

Abstract

Gallbladder cancer (GBC) is a highly malignant cancer with poor prognosis. Although long noncoding RNA (lncRNA) H19 has been reported to play vital role in many human cancers, whether it is involved in GBC proliferation is still unknown. This study was designed to explore the effect of H19 in GBC cell proliferation. The expression of H19 and AKT2 were significantly elevated in GBC tissues, and the level of miR-194-5p is markedly decreased. Moreover, the RNA levels of H19 and AKT2 were positively correlated, and H19 elevation was significantly associated with tumor size. Cell proliferation decreased significantly after knockdown of H19 in GBC-SD and NOZ cells and after knockdown of AKT2 in NOZ cells. Results from cell cycle studies indicated that the S phase were significantly decreased after knockdown of H19 in NOZ cells but significantly elevated after overexpression of H19 in GBC-SD cells. Furthermore, knockdown of H19 upregulated miR-194-5p levels, yet significantly decreased miR-194-5p targeting AKT2 gene expression in NOZ cells. Inhibitor against miR-194-5p reversed these effects. In addition, overexpression of H19 in GBC-SD cells downregulated miR-194-5p and markedly increased AKT2 expression, and miR-194-5p mimic reversed these effects. Eventually, GBC cells were arrested in G0/G1-phase after H19 knockdown, inhibition of miR-194-5p markedly promoted cells into S-phase and co-transfection of siH19, and miR-194-5p inhibitor exerted mutually counter-regulated effects on cell cycle. These results suggested that H19/miR-194-5p/AKT2 axis regulatory network might modulate cell proliferation in GBC.

Keywords

Gallbladder cancer Cell proliferation H19 AKT2 

Notes

Acknowledgments

We thank the Eastern Hepatobiliary Surgical Hospital and Institute, The Second Military University, Shanghai, for their help. This work was supported by the National Natural Science Foundation of China (Grant numbers 81272747and 81572297) and Doctorial innovation fund of Shanghai Jiao Tong University School of Medicine. We thank Dr. Qiu Lei, who helped us with language editing.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: Cancer J Clin. 2015;65(1):5–29. doi: 10.3322/caac.21254.Google Scholar
  2. 2.
    Kanthan R, Senger JL, Ahmed S, Kanthan SC. Gallbladder Cancer in the 21st Century. J Oncol. 2015;2015:967472. doi: 10.1155/2015/967472.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhu AX, Hong TS, Hezel AF, Kooby DA. Current management of gallbladder carcinoma. Oncologist. 2010;15(2):168–81. doi: 10.1634/theoncologist.2009-0302.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rakic M, Patrlj L, Kopljar M, Klicek R, Kolovrat M, Loncar B, et al. Gallbladder cancer. Hepatobiliary Surg Nutr. 2014;3(5):221–6. doi: 10.3978/j.issn.2304-3881.2014.09.03.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Managadze D, Lobkovsky AE, Wolf YI, Shabalina SA, Rogozin IB, Koonin EV. The vast, conserved mammalian lincRNome. PLoS Comput Biol. 2013;9(2):e1002917. doi: 10.1371/journal.pcbi.1002917.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dey BK, Mueller AC, Dutta A. Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription. 2014;5(4):e944014. doi: 10.4161/21541272.2014.944014.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42. doi: 10.1053/j.gastro.2006.08.026.CrossRefPubMedGoogle Scholar
  8. 8.
    Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell. 2014;26(5):722–37. doi: 10.1016/j.ccell.2014.09.014.CrossRefPubMedGoogle Scholar
  9. 9.
    Brunkow ME, Tilghman SM. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 1991;5(6):1092–101.CrossRefPubMedGoogle Scholar
  10. 10.
    Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002;23(11):1885–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Y, Shields T, Crenshaw T, Hao Y, Moulton T, Tycko B. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching. Am J Hum Genet. 1993;53(1):113–24.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Polytarchou C, Iliopoulos D, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, et al. Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res. 2011;71(13):4720–31. doi: 10.1158/0008-5472.CAN-11-0365.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fohlin H, Perez-Tenorio G, Fornander T, Skoog L, Nordenskjold B, Carstensen J, et al. Akt2 expression is associated with good long-term prognosis in oestrogen receptor positive breast cancer. Eur J Cancer. 2013;49(6):1196–204. doi: 10.1016/j.ejca.2012.12.006.CrossRefPubMedGoogle Scholar
  14. 14.
    Nitsche C, Edderkaoui M, Moore RM, Eibl G, Kasahara N, Treger J, et al. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation. Gastroenterology. 2012;142(2):377–87 e1-5. doi: 10.1053/j.gastro.2011.10.026.CrossRefPubMedGoogle Scholar
  15. 15.
    Galicia VA, He L, Dang H, Kanel G, Vendryes C, French BA, et al. Expansion of hepatic tumor progenitor cells in Pten-null mice requires liver injury and is reversed by loss of AKT2. Gastroenterology. 2010;139(6):2170–82. doi: 10.1053/j.gastro.2010.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhao HJ, Ren LL, Wang ZH, Sun TT, Yu YN, Wang YC, et al. MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway. Theranostics. 2014;4(12):1193–208. doi: 10.7150/thno.8712.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pachnis V, Belayew A, Tilghman SM. Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci U S A. 1984;81(17):5523–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Report. 2015;5:11516. doi: 10.1038/srep11516.CrossRefGoogle Scholar
  19. 19.
    Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6(30):29209–23. doi: 10.18632/oncotarget.4976.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Medrzycki M, Zhang Y, Zhang W, Cao K, Pan C, Lailler N, et al. Histone h1.3 suppresses h19 noncoding RNA expression and cell growth of ovarian cancer cells. Cancer Res. 2014;74(22):6463–73. doi: 10.1158/0008-5472.CAN-13-2922.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet. 1994;7(3):433–9. doi: 10.1038/ng0794-433.CrossRefPubMedGoogle Scholar
  22. 22.
    Honda S, Arai Y, Haruta M, Sasaki F, Ohira M, Yamaoka H, et al. Loss of imprinting of IGF2 correlates with hypermethylation of the H19 differentially methylated region in hepatoblastoma. Br J Cancer. 2008;99(11):1891–9. doi: 10.1038/sj.bjc.6604754.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281(16):3766–75. doi: 10.1111/febs.12902.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86. doi: 10.1093/carcin/bgs381.CrossRefPubMedGoogle Scholar
  25. 25.
    Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31(3):350–8. doi: 10.1093/carcin/bgp181.CrossRefPubMedGoogle Scholar
  26. 26.
    Liang WC, Fu WM, Wong CW, Wang Y, Wang WM, Hu GX, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget. 2015;6(26):22513–25. doi: 10.18632/oncotarget.4154.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A. 2008;105(34):12417–22. doi: 10.1073/pnas.0801540105.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Seitz H. Redefining microRNA targets. Curr Biol : CB. 2009;19(10):870–3. doi: 10.1016/j.cub.2009.03.059.CrossRefPubMedGoogle Scholar
  29. 29.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8. doi: 10.1016/j.cell.2011.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12. doi: 10.1016/j.molcel.2013.08.027.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou X, Ye F, Yin C, Zhuang Y, Yue G, Zhang G. The Interaction Between MiR-141 and lncRNA-H19 in Regulating Cell Proliferation and Migration in Gastric Cancer. Cell Physiol Biochem : Int J Exp Cell Physiol Biochem Pharmacol. 2015;36(4):1440–52. doi: 10.1159/000430309.CrossRefGoogle Scholar
  32. 32.
    Imig J, Brunschweiger A, Brummer A, Guennewig B, Mittal N, Kishore S, et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol. 2015;11(2):107–14. doi: 10.1038/nchembio.1713.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol : J Int Soc Oncodev Biol Med. 2015. doi: 10.1007/s13277-015-3779-2.Google Scholar
  34. 34.
    Chiam K, Wang T, Watson DI, Mayne GC, Irvine TS, Bright T, et al. Circulating Serum Exosomal miRNAs As Potential Biomarkers for Esophageal Adenocarcinoma. J Gastrointest Surg : Off J Soc Surg Aliment Tract. 2015;19(7):1208–15. doi: 10.1007/s11605-015-2829-9.CrossRefGoogle Scholar
  35. 35.
    Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–98. doi: 10.1038/sj.onc.1207115.CrossRefPubMedGoogle Scholar
  36. 36.
    Lv J, Ma L, Chen XL, Huang XH, Wang Q. Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3beta/Cdc25A signaling pathway. J Huazhong Univ Sci Technol Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2014;34(3):363–9. doi: 10.1007/s11596-014-1284-2.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang P, Guo Z, Wu Y, Hu R, Du J, He X, et al. Histone deacetylase inhibitors inhibit the proliferation of gallbladder carcinoma cells by suppressing AKT/mTOR signaling. PLoS One. 2015;10(8):e0136193. doi: 10.1371/journal.pone.0136193.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chin YR, Yuan X, Balk SP, Toker A. PTEN-deficient tumors depend on AKT2 for maintenance and survival. Cancer Discovery. 2014;4(8):942–55. doi: 10.1158/2159-8290.CD-13-0873.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N, et al. Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep. 2004;11(1):25–32.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Shou-Hua Wang
    • 1
  • Xiao-Cai Wu
    • 1
  • Ming-Di Zhang
    • 1
  • Ming-Zhe Weng
    • 1
  • Di Zhou
    • 1
  • Zhi-Wei Quan
    • 1
  1. 1.Department of General Surgery, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations