Tumor Biology

, Volume 37, Issue 8, pp 10469–10478 | Cite as

Roles of CDKN1A gene polymorphisms (rs1801270 and rs1059234) in the development of cervical neoplasia

  • Sandra Liliana Vargas-Torres
  • Elyzabeth Avvad Portari
  • Amanda Lima Silva
  • Evandro Mendes Klumb
  • Heloísa Carneiro da Rocha Guillobel
  • Maria José de Camargo
  • Cíntia Barros Santos-Rebouças
  • Fábio Bastos Russomano
  • Jacyara Maria Brito Macedo
Original Article


The CDKN1A gene product is a p53 downstream effector, which participates in cell differentiation, development process, repair, apoptosis, senescence, migration, and tumorigenesis. The objective of our study was investigated the importance of two polymorphisms in the CDKN1A gene, rs1801270 (31C>A) and rs1059234 (70C>T), for the development of cervical lesions in a Southeastern Brazilian population (283 cases, stratified by lesion severity, and 189 controls). CDKN1A genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and/or DNA sequencing. CDKN1A 31A allele presents a genetic pattern of protection for the development of high-grade cervical lesions (CC vs CA genotype: OR = 0.60; 95 % CI = 0.38–0.95; p = 0.029; CA+AA vs CC genotype: OR = 0.60; 95 % CI = 0.39–0.93; p = 0.021). Allele distributions of the CDKN1A 70C>T polymorphism were also different between the two study groups, with the CDKN1A 70T allele being less prevalent among cases. Moreover, the double heterozygote genotype combination 31CA-70CT decreases the chance of developing high-grade squamous intraepithelial lesion (HSIL) and cancer (OR = 0.55; 95 % CI = 0.32–0.93; p = 0.034) by 50 %, representing a protective factor against the development of more severe cervical lesions.


CDKN1A Cervical neoplasia rs1801270 rs1059234 p21 Polymorphism 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: Accessed 05 July 2015.
  2. 2.
    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.CrossRefPubMedGoogle Scholar
  3. 3.
    de Freitas CA, Almeida Diniz Gurgel AP, Chagas BS, Coimbra EC, do Amaral CM. Susceptibility to cervical cancer: an overview. Gynecol Oncol. 2012;126:304–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Muñoz N, Castellsaque X, de Gonzales AB, Gissmann L. HPV in the etiology of human cancer. Vaccine. 2006;24:S1–10.CrossRefGoogle Scholar
  5. 5.
    Weinberg RA. How cancer arises. Sci Am. 1996;62–70.Google Scholar
  6. 6.
    El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Coleman N, Kissil J. Recent advances in the development of p21-activated kinase inhibitors. Cell Logist. 2012;2:132–5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Overton W, Spencerb SL, Noderera WL, Meyer T, Wang CL. Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states. PNAS. 2014;e4386–93.Google Scholar
  10. 10.
    Souza H, Santos AM, Pinto D, Medeiros R. Is there a biological plausability for p53 codon 72 polymorphism influence on cervical cancer development? Acta Med Port. 2011;24:127–34.Google Scholar
  11. 11.
    Ma H, Zhou Z, Wei S, Wei Q. Association between p21 Ser31Arg polymorphism and cancer risk: a meta-analysis. Chin J Cancer. 2011;30:254–63.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Niehs Environmental Genome Project. [Internet] University of Washington. Available from: Accessed 25 Nov 14.
  13. 13.
    Chedid M, Michieli P, Lengel C, Huppi K, Givol D. A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene. 1994;9:3021–4.PubMedGoogle Scholar
  14. 14.
    Birgander R, Sjalander A, Saha N, et al. The codon 31 polymorphism of the p53-inducible gene p21 shows distinct differences between major ethnic groups. Hum Hered. 1996;46:148–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Bhattacharya P, Sengupta S. Lack of evidence that proline homozygosity at codón 72 of p53 and rare arginine allele at codón 31 of p21, jointly mediate cervical cancer susceptibility among Indian women. Gynecol Oncol. 2005;99:176–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Jiang P, Liu J, Li W, Zeng X, Tang J. Role of p53 and p21 polymorphisms in the risk of cervical cancer among Chinese women. Acta Biochim Biophys Sin. 2010;42:671–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Tian Q, Lu W, Chen H, Ye F, Xie X. The nonsynonymous single-nucleotide polymorphisms in codon 31 of p21 gene and the susceptibility to cervical cancer in Chinese women. Int J Gynecol Cancer. 2009;19:1011–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Roh JW, Kim BK, Lee CH, Kim J, Chung HH, Kim JW, et al. p53 codon 72 and p21 codon 31 polymorphisms and susceptibility to cervical adenocarcinoma in Korean women. Oncol Res. 2010;18:453–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Ma Y, Zhang Y, Lin L, Guo X, Wu Y, Wen W, et al. Quantitative assessment of the relationship between p21 Ser31Arg polymorphism and cervical cancer. Tumour Biol. 2013;34:3887–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang N, Wang S, Zhang Q, Lu Y, Wei H, Li W, et al. Association of p21 SNPs and risk of cervical cancer among Chinese women. BMC Cancer. 2012;12:589.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li G, Liu Z, Sturgis EM, Shi Q, Chamberlain RM, Spitz MR, et al. Genetic polymorphisms of p21 are associated with risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2005;9:1596–602.CrossRefGoogle Scholar
  22. 22.
    Carvalho IN, de Oliveira Reis AH, Cabello PH, Vargas FR. Polymorphisms of CDKN1A gene and risk of retinoblastoma. Carcinogenesis. 2013;34:2774–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Manta FS, Pereira R, Caiafa A, Silva DA, Gusmão L, Carvalho EF. Analysis of genetic ancestry in the admixed Brazilian population from Rio de Janeiro using 46 autosomal ancestry informative indel markers. Ann Hum Biol. 2013;40:94–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Vargas-Torres SL, Portari EA, Klumb EM, Guillobel HC, de Camargo MJ, Russomano FB, et al. Association of CDKN2A polymorphisms with the severity of cervical neoplasia in a Brazilian population. Biomarkers. 2014;9:121–7.CrossRefGoogle Scholar
  25. 25.
    Klumb EM, Pinto AC, Jesus GR, Araujo Jr M, Jascone L, Gayer CR, et al. Are women with lupus at higher risk of HPV infection? Lupus. 2010;19:1485–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Konishi R, Sakatani S, Kimihiro K, Suzuki K. Polymorphisms of p21 cyclin-dependent kinase inhibitor and malignant skin tumors. J Dermatol Sci. 2000;24:177–83.CrossRefPubMedGoogle Scholar
  27. 27.
    Iniesta R, Guino E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac Sanit. 2005;19:333–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats your web tool for SNP analysis. [Internet] Bioinformatics. 2006;22:1928–9. Available from: Accessed 10 Aug 15.
  29. 29.
    Vargas-Torres SL, Portari EA, Klumb EM, Guillobel HC, Camargo MJ, Russomano FB, et al. Effects of MDM2 promoter polymorphisms on the development of cervical neoplasia in a Southeastern Brazilian population. Biomarkers. 2014;19:637–45.CrossRefPubMedGoogle Scholar
  30. 30.
    Portari E, Russomano FB, De Camargo MJ, Gayer CR, Guillobel HC, Santos-Rebouças CB, et al. Immunohistochemical expression of cyclin D1, p16Ink4a, p21WAF1, and Ki-67 correlates with the severity of cervical neoplasia. Int J Gynecol Pathol. 2013;32:501–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Lukas J, Groshen S, Saffari B, Niu N, Reles A, Wen WH, et al. WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, ovary, and endometrium. Am J Pathol. 1997;150:167–75.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sun Y, Hildesheim A, Li H, Li Y, Chen JY, Cheng YJ, et al. No point mutation but a codon 31ser>arg polymorphism of the WAF-1/CIP-1/p21 tumor suppressor gene in nasopharyngeal carcinoma (NPC): the polymorphism distinguishes Caucasians from Chinese. Cancer Epidemiol Biomarkers Prev. 1995;4:261–7.PubMedGoogle Scholar
  33. 33.
    Su L, Sai Y, Fan R, Thurston SW, Miller DP, Zhou W, et al. p53 (codon 72) and p21 (codon 31) polymorphisms alter in vivo mRNA expression of p21. Lung Cancer. 2003;40:259–66.CrossRefPubMedGoogle Scholar
  34. 34.
    Gomes CC, Drummond SN, Guimarães AL, Andrade CI, Mesquita RA, Gomez RS. p21/ WAF1 and cyclin D1 variants and oral squamous cell carcinoma. J Oral Pathol Med. 2008;37:151–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Valentin MD, Canalle R, Queiroz Rde P, Tone LG. Frequency of polymorphisms and protein expression of cyclin-dependent kinase inhibitor 1A (CDKN1A) in central nervous system tumors. Sao Paulo Med J. 2009;127:288–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen EY, Tran A, Raho CJ, Birch CM, Crum CP, Hirsch MS. Histological ‘progression’ from low (LSIL) to high (HSIL) squamous intraepithelial lesion is an uncommon event and an indication for quality assurance review. Mod Pathol. 2010;23:1045–51.CrossRefPubMedGoogle Scholar
  37. 37.
    Roh JW, Kim MH, Kim JW, Park N, Song Y, Kang S, et al. Polymorphisms in codon 31 of p21 and cervical cancer susceptibility in Korean women. Cancer Lett. 2001;165:59–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Harima Y, Sawada S, Nagata K, Sougawa M, Ostapenko V, Ohnishi T. Polymorphism of the WAF1 gene is related to susceptibility to cervical cancer in Japanese women. Int J Mol Med. 2001;7:261–4.PubMedGoogle Scholar
  39. 39.
    Liu F, Li B, Wei Y, Chen X, Ma Y, Yan L, et al. p21 codon 31 polymorphism associated with cancer among white people: evidence from a meta-analysis involving 78074 subjects. Mutagenesis. 2011;26:513–21.CrossRefPubMedGoogle Scholar
  40. 40.
    Tanno B, Cesi V, Vitali R, Sesti F, Giuffrida ML, Mancini C, et al. Silencing of endogenous IGFBP-5 by micro RNA interference affects proliferation, apoptosis and differentiation of neuroblas- toma cells. Cell Death Differ. 2005;12:213–23.CrossRefPubMedGoogle Scholar
  41. 41.
    Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590–610.CrossRefPubMedGoogle Scholar
  43. 43.
    Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010;29:2302–8.CrossRefPubMedGoogle Scholar
  45. 45.
    National Center for Biotechnology Information, U.S. National Library of Medicine. Available from: Accessed 08 Sept 2015
  46. 46.
    Yin D, Jiang Y, Zhang S, Wang N, Lu Y, Wei H, et al. No association between p21 gene rs1059234 polymorphisms and risk of endometrial cancer among Han women in Northeast China. Cell Biochem Biophys. 2015;71:167–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Johnson GG, Sherrington PD, Carter A, Lin K, Liloglou T, Field JK, et al. A novel type of p53 pathway dysfunction in chronic lymphocytic leukemia resulting from two interacting single nucleotide polymorphisms within the p21 gene. Cancer Res. 2009;69:5210–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Taghavi N, Biramijamal F, Abbaszadegan MR, Khademi H, Sotoudeh M, Khoshbakht S. P21 (Waf1/Cip1) gene polymorphisms and possible interaction with cigarette smoking in esophageal squamous cell carcinoma in northeastern Iran: a preliminary study. Arch Iran Med. 2010;13:235–42.PubMedGoogle Scholar
  49. 49.
    Solovyev V, Sagitov V. Softberry, Inc., 2015. Available from: Accessed on 08 Sept 2015.
  50. 50.
    Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinf. 2013;14 Suppl2:S4. Available from: Accessed 08 Sept 2015.

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Sandra Liliana Vargas-Torres
    • 1
  • Elyzabeth Avvad Portari
    • 2
    • 3
  • Amanda Lima Silva
    • 1
  • Evandro Mendes Klumb
    • 4
  • Heloísa Carneiro da Rocha Guillobel
    • 5
  • Maria José de Camargo
    • 6
  • Cíntia Barros Santos-Rebouças
    • 7
  • Fábio Bastos Russomano
    • 6
  • Jacyara Maria Brito Macedo
    • 1
  1. 1.Department of Biochemistry, Biology InstituteState University of Rio de Janeiro - UERJRio de JaneiroBrazil
  2. 2.Department of PathologyState University of Rio de Janeiro - UERJRio de JaneiroBrazil
  3. 3.Department of PathologyFernandes Figueira Institute - FIOCRUZRio de JaneiroBrazil
  4. 4.Department of RheumatologyState University of Rio de Janeiro - UERJRio de JaneiroBrazil
  5. 5.Department of Biophysics and BiometryState University of Rio de Janeiro - UERJRio de JaneiroBrazil
  6. 6.Department of GynecologyFernandes Figueira Institute - FIOCRUZRio de JaneiroBrazil
  7. 7.Department of GeneticsState University of Rio de Janeiro - UERJRio de JaneiroBrazil

Personalised recommendations