Tumor Biology

, Volume 37, Issue 7, pp 9603–9613 | Cite as

Overexpression of long non-coding RNA LOC400891 promotes tumor progression and poor prognosis in prostate cancer

  • Jun Wang
  • Gong Cheng
  • Xiao Li
  • Yongsheng Pan
  • Chao Qin
  • Haiwei Yang
  • Lixin Hua
  • Zengjun Wang
Original Article


Tumor recurrence and metastasis remain the major obstacles for the successful treatment of patients diagnosed with prostate cancer (PCa). In recent years, long non-coding RNAs (lncRNAs) have been considered as key regulators of tumor behavior. In this study, we investigated the biological role and clinical relevance of the lncRNA LOC400891 in prostate cancer. Using of lncRNAs expression chips screening and the biological analysis, we found the target lncRNA (LOC400891). Moreover, the expression levels of lncRNA LOC400891 in PCa tissues and cell lines were evaluated by quantitative real-time PCR (qRT-PCR), and its association with biochemical recurrence-free survival of patients was analyzed by statistical analysis. Furthermore, the effect of LOC400891 on proliferation, migration, and invasion was studied in PCa cells. We found that the expression level of LOC400891 was higher in PCa tissues and cells compared to adjacent non-tumor tissues and normal prostate stromal immortalized cells WPMY-1. The patients with higher LOC400891 expression had an advanced clinical features and a shorter biochemical recurrence-free survival time than those with lower LOC400891 expression. Furthermore, multivariate analysis showed that the status of LOC400891 expression was an independent predictor of biochemical recurrence-free survival in PCa. We also found that knockdown of LOC400891 could inhibit cell proliferation, migration, and invasion in vitro study. Our data suggested that lncRNA LOC400891 was a novel molecule involved in PCa progression, which provided a potential prognostic biomarker and therapeutic target.


Long non-coding RNA Prostate cancer Prognosis 


Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_4847_MOESM1_ESM.doc (40 kb)
Table S1 (DOC 40.5 kb)
13277_2016_4847_MOESM2_ESM.doc (200 kb)
Figure S1 (DOC 199 kb)


  1. 1.
    Center MM, Jemal A, Lortet-Tieulent J, Ferlay J, Brawley O, Bray F. International variation in prostate cancer incidence and mortality Rates. Eur Urol. 2012;61:1079–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Han S, Zhang S, Chen W, Li C. Analysis of the status and trends of prostate cancer incidence in China [J]. Chinese Clinical Oncology. 2013;18:330–4.Google Scholar
  4. 4.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Derrien T, Johnson R, Bussotti G, Anzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19:R152–61.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov. 2011;1:391–407.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Crea F, Watahiki A, Quagliata L, Xue H, Pikor L, Parolia A, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5:764–74.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mehra R, Shi Y, Udager AM, Prensner JR, Sahu A, Iyer MK, et al. A novel RNA in situ hybridization assay for the long noncoding RNA SChLAP1 predicts poor clinical outcome after radical prostatectomy in clinically localized prostate cancer. Neoplasia. 2014;16:1121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59:5975–9.PubMedGoogle Scholar
  12. 12.
    Nilsson J, Skog J, Nordstrandetal A, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100(10):1603–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ding ZB, Shi YH, Zhou J, Shi GM, Ke AW, Qiu SJ, et al. Liver–intestine cadherin predicts microvascular invasion and poor prognosis of hepatitis B virus-positive hepatocellular carcinoma. Cancer. 2009;115(20):4753–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104(4):458–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72(5):1126–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15 (INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol. 2012;48(3):R45–53.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, et al. DD3(PCA3), a very sensitive andspecific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8.PubMedGoogle Scholar
  20. 20.
    Tomlins SA, Aubin SM, Siddiqui J, Lonigro RJ, Sefton-Miller L, Miick S, et al. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med. 2011;3:94ra72.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L, et al. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci USA. 2000;97:12216–21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 2013;20:908–13.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A. 2002;99(26):16899–903.CrossRefPubMedGoogle Scholar
  24. 24.
    Li L, Ittmann M, Ayala G, Tsai M, Amat OR, Wheeler T, et al. The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis. 2005;8:108–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Pommery N, Henichart J. Involvement of PI3K/Akt pathway in prostate cancer—potential strategies for developing targeted therapies. Mini Rev Med Chem. 2005;5:1125–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Rizvi MM, Alam MS, Ali A, Mehdi SJ, Batra S, Mandal AK. Aberrant promoter methylation and inactivation of PTEN gene in cervical carcinoma from Indian population. J Cancer Res Clin Oncol. 2011;137:1255–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Bai W, Wang L, Ji W, Gao H. Expression profiling of supraglottic carcinoma: PTEN and thrombospondin 2 are associated with inhibition of lymphatic metastasis. Acta Otolaryngol. 2009;129:569–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010;584:4575–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays. 2001;23:912–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009;1796:75–90.PubMedGoogle Scholar
  31. 31.
    Watson MA, Ylagan LR, Trinkaus KM, Gillanders WE, Naughton MJ, Weilbaecher KN, et al. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res. 2007;13:5001–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sihto H, Lundin J, Lundin M, Lehtimäki T, Ristimäki A, Holli K, et al. Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res. 2011;13:R87.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74:1651–60.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Reproductive Medicine, Department of UrologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations