Advertisement

Tumor Biology

, Volume 37, Issue 4, pp 4275–4279 | Cite as

Inhibitor of growth-4 is a potential target for cancer therapy

Review

Abstract

The inhibitor of growth-4 (ING-4) belongs to the inhibitor of growth (ING) family that is a type II tumor suppressor gene including five members (ING1-5). As a tumor suppressor, ING4 inhibits tumor growth, invasion, and metastasis by multiple signaling pathways. In addition to that, ING4 can facilitate cancer cell sensitivity to chemotherapy and radiotherapy. Although ING4 loss is observed for many types of cancers, increasing evidences show that ING4 can be used for gene therapy. In this review, the recent progress of ING4 regulating tumorigenesis is discussed.

Keywords

ING4 p53 NFκB DNA repair Cell proliferation 

Notes

Acknowledgments

This work was supported by the Jiangsu Province Natural Science Foundation (BK20131251) and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Feng X, Hara Y, Riabowol K. Different HATS of the ING1 gene family. Trends Cell Biol. 2002;12:532–8.CrossRefPubMedGoogle Scholar
  2. 2.
    He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 2005;22:104–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Russell M, Berardi P, Gong W, Riabowol K. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis. Exp Cell Res. 2006;312:951–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Hu RM, Han ZG, Song HD, Peng YD, Huang QH, Ren SX, et al. Gene expression profiling in the human hypothalamus-pituitary-adrenal axis and full-length cDNA cloning. Proc Natl Acad Sci U S A. 2000;97:9543–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature. 2004;428:328–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Gunduz M, Ouchida M, Fukushima K, Ito S, Jitsumori Y, Nakashima T, et al. Allelic loss and reduced expression of the ING3, a candidate tumor suppressor gene at 7q31, in human head and neck cancers. Oncogene. 2002;21:4462–70.CrossRefPubMedGoogle Scholar
  7. 7.
    Unoki M, Shen JC, Zheng ZM, Harris CC. Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J Biol Chem. 2006;281:34677–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res. 2003;63:2373–8.PubMedGoogle Scholar
  9. 9.
    Doyon Y, Cayrou C, Ullah M, Landry AJ, Cote V, Selleck W, et al. ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell. 2006;21:51–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim S, Chin K, Gray JW, Bishop JM. A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci U S A. 2004;101:16251–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moreno A, Soleto I, Garcia-Sanz P, Moreno-Bueno G, Palmero I. ING4 regulates a secretory phenotype in primary fibroblasts with dual effects on cell proliferation and tumor growth. Oncogene. 2014;33:1945–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Mathema VB, Koh YS. Inhibitor of growth-4 mediates chromatin modification and has a suppressive effect on tumorigenesis and innate immunity. Tumour Biol. 2012;33:1–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Sun J, Shen Q, Lu H, Jiang Z, Xu W, Feng L, et al. Oncogenic Ras suppresses ING4-TDG-Fas axis to promote apoptosis resistance. Oncotarget. 2015;6:41997–2007.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Yan R, He L, Li Z, Han X, Liang J, Si W, et al. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer. Genes Dev. 2015;29:672–85.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yao H, Wang K, Wang Y, Wang S, Li J, Lou J, et al. Enhanced blood–brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials. 2015;37:345–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Xu M, Xie Y, Sheng W, Miao J, Yang J. Adenovirus-mediated ING4 gene transfer in osteosarcoma suppresses tumor growth via induction of apoptosis and inhibition of tumor angiogenesis. Technol Cancer Res Treat. 2015;14:369–78.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhao Y, Li Z, Sheng W, Miao J, Yang J. Radiosensitivity by ING4-IL-24 bicistronic adenovirus-mediated gene cotransfer on human breast cancer cells. Cancer Gene Ther. 2013;20:38–45.CrossRefPubMedGoogle Scholar
  18. 18.
    Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene. 2005;356:109–17.CrossRefPubMedGoogle Scholar
  19. 19.
    Mao ZL, He SB, Sheng WH, Dong XQ, Yang JC. Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo. Oncol Rep. 2013;30:2187–94.PubMedGoogle Scholar
  20. 20.
    Ling C, Xie Y, Zhao D, Zhu Y, Xiang J, Yang J. Enhanced radiosensitivity of non-small-cell lung cancer (NSCLC) by adenovirus-mediated ING4 gene therapy. Cancer Gene Ther. 2012;19:697–706.CrossRefPubMedGoogle Scholar
  21. 21.
    Li J, Li G. Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Res. 2010;70:10445–53.CrossRefPubMedGoogle Scholar
  22. 22.
    Xu Y, Jin J, Zhang W, Zhang Z, Gao J, Liu Q, et al. EGFR/MDM2 signaling promotes NFkappaB activation via PPARgamma degradation. Carcinogenesis. 2015.Google Scholar
  23. 23.
    Gao J, Liu Q, Xu Y, Gong X, Zhang R, Zhou C, et al. PPARalpha induces cell apoptosis by destructing Bcl2. Oncotarget. 2015.Google Scholar
  24. 24.
    Hou Y, Gao J, Xu H, Xu Y, Zhang Z, Xu Q, et al. PPARgamma E3 ubiquitin ligase regulates MUC1-C oncoprotein stability. Oncogene. 2013.Google Scholar
  25. 25.
    Yan A, Yang C, Chen Z, Li C, Cai L. MiR-761 promotes progression and metastasis of non-small cell lung cancer by targeting ING4 and TIMP2. Cell Physiol Biochem. 2015;37:55–66.CrossRefPubMedGoogle Scholar
  26. 26.
    Cao L, Chen S, Zhang C, Chen C, Lu N, Jiang Y, et al. ING4 enhances paclitaxel’s effect on colorectal cancer growth in vitro and in vivo. Int J Clin Exp Pathol. 2015;8:2919–27.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim S, Welm AL, Bishop JM. A dominant mutant allele of the ING4 tumor suppressor found in human cancer cells exacerbates MYC-initiated mouse mammary tumorigenesis. Cancer Res. 2010;70:5155–62.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Byron SA, Min E, Thal TS, Hostetter G, Watanabe AT, Azorsa DO, et al. Negative regulation of NF-kappaB by the ING4 tumor suppressor in breast cancer. PLoS One. 2012;7, e46823.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Berger PL, Frank SB, Schulz VV, Nollet EA, Edick MJ, Holly B, et al. Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis. Cancer Res. 2014;74:3357–68.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nanding A, Tang L, Cai L, Chen H, Geng J, Liu X, et al. Low ING4 protein expression detected by paraffin-section immunohistochemistry is associated with poor prognosis in untreated patients with gastrointestinal stromal tumors. Gastric Cancer. 2014;17:87–96.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang H, Zhou X, Xu C, Yang J, Xiang J, Tao M, et al. Synergistic tumor suppression by adenovirus-mediated ING4/PTEN double gene therapy for gastric cancer. Cancer Gene Ther. 2015.Google Scholar
  32. 32.
    Lou C, Jiang S, Guo X, Dong XS. ING4 is negatively correlated with microvessel density in colon cancer. Tumour Biol. 2012;33:2357–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Liu Y, Yu L, Wang Y, Zhang Y, Wang Y, Zhang G. Expression of tumor suppressor gene ING4 in ovarian carcinoma is correlated with microvessel density. J Cancer Res Clin Oncol. 2012;138:647–55.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang QS, Li M, Zhang LY, Jin Y, Tong DD, Yu Y, et al. Down-regulation of ING4 is associated with initiation and progression of lung cancer. Histopathology. 2010;57:271–81.CrossRefPubMedGoogle Scholar
  35. 35.
    Klironomos G, Bravou V, Papachristou DJ, Gatzounis G, Varakis J, Parassi E, et al. Loss of inhibitor of growth (ING-4) is implicated in the pathogenesis and progression of human astrocytomas. Brain Pathol. 2010;20:490–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Fang F, Luo LB, Tao YM, Wu F, Yang LY. Decreased expression of inhibitor of growth 4 correlated with poor prognosis of hepatocellular carcinoma. Cancer Epidemiol Biomark Prev. 2009;18:409–16.CrossRefGoogle Scholar
  37. 37.
    Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J. Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett. 2008;271:105–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Xie YF, Sheng W, Xiang J, Zhang H, Ye Z, Yang J. Adenovirus-mediated ING4 expression suppresses pancreatic carcinoma cell growth via induction of cell-cycle alteration, apoptosis, and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 2009;24:261–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, Yang J, Sheng W, Xie Y, Liu J. Adenovirus-mediated ING4/PTEN double tumor suppressor gene co-transfer modified by RGD enhances antitumor activity in human nasopharyngeal carcinoma cells. Int J Oncol. 2015;46:1295–303.PubMedGoogle Scholar
  40. 40.
    Wu J, Zhu Y, Xu C, Xu H, Zhou X, Yang J, et al. Adenovirus-mediated p53 and ING4 gene cotransfer elicits synergistic antitumor effects through enhancement of p53 acetylation in breast cancer. Oncol Rep. 2016;35:243–52.PubMedGoogle Scholar
  41. 41.
    Han Z, Zhou C, Sun B, Yan Q, Zhang J. Experimental studies on the inhibition of adenovirus-ING4-OSM therapy on nasopharyngeal carcinoma proliferation in vitro and in vivo. Cell Biochem Biophys. 2014;70:1573–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Conner J, Braidwood L. Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy. Cancer Gene Ther. 2012;19:499–507.CrossRefPubMedGoogle Scholar
  43. 43.
    Baldwin Jr AS. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest. 2001;107:3–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–224.CrossRefPubMedGoogle Scholar
  45. 45.
    Stancovski I, Baltimore D. NF-kappaB activation: the I kappaB kinase revealed? Cell. 1997;91:299–302.CrossRefPubMedGoogle Scholar
  46. 46.
    Ghosh S, Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature. 1990;344:678–82.CrossRefPubMedGoogle Scholar
  47. 47.
    Hou Y, Mortimer L, Chadee K. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses. J Biol Chem. 2010;285:35497–504.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xu H, You M, Shi H, Hou Y. Ubiquitin-mediated NFkappaB degradation pathway. Cell Mol Immunol. 2014.Google Scholar
  49. 49.
    Hou Y, Moreau F, Chadee K. PPARgamma is an E3 ligase that induces the degradation of NFkappaB/p65. Nat Commun. 2012;3:1300.CrossRefPubMedGoogle Scholar
  50. 50.
    Hou Y, Zhang Z, Xu Q, Wang H, Xu Y, Chen K. Inhibitor of growth 4 induces NFkappaB/p65 ubiquitin-dependent degradation. Oncogene. 2014;33:1997–2003.CrossRefPubMedGoogle Scholar
  51. 51.
    Nozell S, Laver T, Moseley D, Nowoslawski L, De Vos M, Atkinson GP, et al. The ING4 tumor suppressor attenuates NF-kappaB activity at the promoters of target genes. Mol Cell Biol. 2008;28:6632–45.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tang Y, Cheng Y, Martinka M, Ong CJ, Li G. Prognostic significance of KAI1/CD82 in human melanoma and its role in cell migration and invasion through the regulation of ING4. Carcinogenesis. 2014;35:86–95.CrossRefPubMedGoogle Scholar
  53. 53.
    Coles AH, Gannon H, Cerny A, Kurt-Jones E, Jones SN. Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc Natl Acad Sci U S A. 2010;107:11423–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li S, Fan T, Liu H, Chen J, Qin C, Ren X. Tumor suppressor ING4 overexpression contributes to proliferation and invasion inhibition in gastric carcinoma by suppressing the NF-kappaB signaling pathway. Mol Biol Rep. 2013;40:5723–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Raho G, Miranda C, Tamborini E, Pierotti MA, Greco A. Detection of novel mRNA splice variants of human ING4 tumor suppressor gene. Oncogene. 2007;26:5247–57.CrossRefPubMedGoogle Scholar
  56. 56.
    Loginov VI, Maliukova AV, Seregin Iu A, Khodyrev DS, Kazubskaia TP, Ermilova VD, et al. Methylation of the promoter region of the RASSF1A gene, a candidate tumor suppressor, in primary epithelial tumors. Mol Biol. 2004;38:654–67.CrossRefGoogle Scholar
  57. 57.
    Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem. 1999;274:23027–34.CrossRefPubMedGoogle Scholar
  58. 58.
    Iizuka M, Matsui T, Takisawa H, Smith MM. Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol. 2006;26:1098–108.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Avvakumov N, Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene. 2007;26:5395–407.CrossRefPubMedGoogle Scholar
  60. 60.
    Saksouk N, Avvakumov N, Champagne KS, Hung T, Doyon Y, Cayrou C, et al. HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail. Mol Cell. 2009;33:257–65.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Palacios A, Munoz IG, Pantoja-Uceda D, Marcaida MJ, Torres D, Martin-Garcia JM, et al. Molecular basis of histone H3K4me3 recognition by ING4. J Biol Chem. 2008;283:15956–64.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 2006;442:96–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hung T, Binda O, Champagne KS, Kuo AJ, Johnson K, Chang HY, et al. ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell. 2009;33:248–56.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Foy RL, Song IY, Chitalia VC, Cohen HT, Saksouk N, Cayrou C, et al. Role of Jade-1 in the histone acetyltransferase (HAT) HBO1 complex. J Biol Chem. 2008;283:28817–26.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang X, Wang KS, Wang ZQ, Xu LS, Wang QW, Chen F, et al. Nuclear localization signal of ING4 plays a key role in its binding to p53. Biochem Biophys Res Commun. 2005;331:1032–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Guo Y, Meng X, Wang Q, Wang Y, Shang H. The ING4 binding with p53 and induced p53 acetylation were attenuated by human papillomavirus 16 E6. PLoS One. 2013;8, e71453.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Guo Q, Fast W. Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. J Biol Chem. 2011;286:17069–78.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Liao B, Hu Y, Brewer G. Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol. 2007;14:511–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Lu M, Pan C, Zhang L, Ding C, Chen F, Wang Q, et al. ING4 inhibits the translation of proto-oncogene MYC by interacting with AUF1. FEBS Lett. 2013;587:1597–604.CrossRefPubMedGoogle Scholar
  70. 70.
    Ozer A, Bruick RK. Regulation of HIF by prolyl hydroxylases: recruitment of the candidate tumor suppressor protein ING4. Cell Cycle. 2005;4:1153–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, et al. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood. 2007;110:4464–75.CrossRefPubMedGoogle Scholar
  72. 72.
    Lu J, Tang Y, Cheng Y, Zhang G, Yip A, Martinka M, et al. ING4 regulates JWA in angiogenesis and their prognostic value in melanoma patients. Br J Cancer. 2013;109:2842–52.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  74. 74.
    Zhang XJ, Ye H, Zeng CW, He B, Zhang H, Chen YQ. Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol. 2010;3:46.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang X, Zhu W, Zhang J, Huo S, Zhou L, Gu Z, et al. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem Biophys Res Commun. 2010;395:275–80.CrossRefPubMedGoogle Scholar
  76. 76.
    Huang JY, Cui SY, Chen YT, Song HZ, Huang GC, Feng B, et al. MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression. PLoS One. 2013;8, e72615.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Mraz M, Dolezalova D, Plevova K, Stano Kozubik K, Mayerova V, Cerna K, et al. MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia. Blood. 2012;119:2110–3.CrossRefPubMedGoogle Scholar
  78. 78.
    Loesch K, Galaviz S, Hamoui Z, Clanton R, Akabani G, Deveau M, et al. Functional genomics screening utilizing mutant mouse embryonic stem cells identifies novel radiation-response genes. PLoS One. 2015;10, e0120534.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhao Y, Su C, Zhai H, Tian Y, Sheng W, Miao J, et al. Synergistic antitumor effect of adenovirus-mediated hING4 gene therapy and (125)I radiation therapy on pancreatic cancer. Cancer Lett. 2012;316:211–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Huang JH, Ling CH, Yang JC, Zhao DG, Xie YF, Sheng WH. The in vitro and in vivo effects of adenovirus-mediated inhibitor of growth 4 and interleukin-24 co-expression on the radiosensitivity of human lung adenocarcinoma. Zhonghua Jie He He Hu Xi Za Zhi. 2011;34:413–8.PubMedGoogle Scholar
  81. 81.
    Wang R, Huang J, Feng B, De W, Chen L. Identification of ING4 (inhibitor of growth 4) as a modulator of docetaxel sensitivity in human lung adenocarcinoma. Mol Med. 2012;18:874–86.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of OncologyAffiliated Wujin People’s Hospital, Jiangsu UniversityChangzhouChina
  2. 2.Institute of Life SciencesJiangsu UniversityZhenjiangChina

Personalised recommendations