Tumor Biology

, Volume 37, Issue 8, pp 11299–11309 | Cite as

Bmi1 combines with oncogenic KRAS to induce malignant transformation of human pancreatic duct cells in vitro

  • Shao-jie Chen
  • Yin-ting Chen
  • Lin-juan Zeng
  • Qiu-bo Zhang
  • Guo-da Lian
  • Jia-jia Li
  • Ke-ge Yang
  • Chu-mei Huang
  • Ya-qing Li
  • Zhong-hua Chu
  • Kai-hong Huang
Original Article


It is critical to understand the pathogenesis of preinvasive stages of pancreatic duct adenocarcinoma (PDAC) for developing novel potential diagnostic and therapeutic targets. The polycomb group family member B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi1) is overexpressed and involved in cancer progression in PDAC; however, its role in the multistep malignant transformation of human pancreatic duct cells has not been directly demonstrated. In this study, we stably expressed Bmi1 in a model of telomerase-immortalized human pancreatic duct-derived cells (HPNE) and showed that Bmi1 promoted HPNE cell proliferation, migration, and invasion but not malignant transformation. We then used mutant KRASG12D as a second oncogene to transform HPNE cells and showed that it further enhanced Bmi1-induced malignant potential. More importantly, coexpression of KRASG12D and Bmi1 caused anchorage-independent growth transformation in vitro but still failed to produce tumors in nude mice. Finally, we found that mutant KRASG12D induced HPNE-Bmi1 cells to undergo partial epithelial-mesenchymal transition (EMT) likely via upregulation of snail. Knockdown of KRASG12D significantly reduced the expression of snail and vimentin at both the messenger RNA (mRNA) and protein level and further impaired the anchorage-independent growth capability of invasive cells. In summary, our findings demonstrate that coexpression of Bmi1 and KRASG12D could lead to transformation of HPNE cells in vitro and suggest potential new targets for diagnosis and treatment of PDAC.


Pancreatic cancer Bmi1 KRAS Snail EMT 



This work was supported by the National Natural Science Foundation of China (Grant No. 81302140, 81572396, 81502503), Science and Technology Planning Project of Guangdong Province, China (Grant No. 2013B021800233), National Natural Science Foundation of Guangdong, China (Grant No. 2014A030313050), and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130171120093). Grant [2013]163 from Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology and grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes were acknowledged.

Compliance with ethical standards

Conflicts of interest


Supplementary material

13277_2016_4840_Fig6_ESM.gif (106 kb)
Fig. S1

PANC-1 cells were able to form colonies in soft agar (GIF 106 kb)

13277_2016_4840_MOESM1_ESM.tif (3.8 mb)
High Resolution Image (TIF 3857 kb)
13277_2016_4840_Fig7_ESM.gif (118 kb)
Fig. S2

Both HPNE-Bmi1-Vector and HPNE-Bmi1-KRASG12D cells failed to form tumors in nude mice for up to 8 weeks following inoculation (GIF 117 kb)

13277_2016_4840_MOESM2_ESM.tif (1.2 mb)
High Resolution Image (TIF 1269 kb)


  1. 1.
    Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378:607–20.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: Cancer J Clin. 2013;63:11–30.Google Scholar
  3. 3.
    Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Sipos B, Frank S, Gress T, Hahn S, Kloppel G. Pancreatic intraepithelial neoplasia revisited and updated. Pancreatology. 2009;9:45–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in e mu-myc transgenic mice. Cell. 1991;65:753–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Haupt Y, Bath ML, Harris AW, Adams JM. Bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene. 1993;8:3161–4.PubMedGoogle Scholar
  7. 7.
    Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M. The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature. 1999;397:164–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Jacobs JJ, van Lohuizen M. Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta. 2002;1602:151–61.PubMedGoogle Scholar
  9. 9.
    Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest. 2004;113:175–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim JH, Yoon SY, Jeong SH, Kim SY, Moon SK, Joo JH, et al. Overexpression of bmi-1 oncoprotein correlates with axillary lymph node metastases in invasive ductal breast cancer. Breast Edinb Scotl. 2004;13:383–8.CrossRefGoogle Scholar
  12. 12.
    Breuer RH, Snijders PJ, Sutedja GT, Sewalt RG, Otte AP, Postmus PE, et al. Expression of the p16(ink4a) gene product, methylation of the p16(ink4a) promoter region and expression of the polycomb-group gene bmi-1 in squamous cell lung carcinoma and premalignant endobronchial lesions. Lung Cancer Amst Neth. 2005;48:299–306.CrossRefGoogle Scholar
  13. 13.
    Martinez-Romero C, Rooman I, Skoudy A, Guerra C, Molero X, Gonzalez A, et al. The epigenetic regulators bmi1 and ring1b are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma. J Pathol. 2009;219:205–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Song W, Tao K, Li H, Jin C, Song Z, Li J, et al. Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci. 2010;101:1754–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Yin T, Wei H, Leng Z, Yang Z, Gou S, Wu H, et al. Bmi-1 promotes the chemoresistance, invasion and tumorigenesis of pancreatic cancer cells. Chemotherapy. 2011;57:488–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, et al. Bmi1 enhances tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS One. 2013;8, e55820.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology. 2007;133:937–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Datta S, Hoenerhoff MJ, Bommi P, Sainger R, Guo WJ, Dimri M, et al. Bmi-1 cooperates with h-ras to transform human mammary epithelial cells via dysregulation of multiple growth-regulatory pathways. Cancer Res. 2007;67:10286–95.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dovey JS, Zacharek SJ, Kim CF, Lees JA. Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci U S A. 2008;105:11857–62.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang Q, Li WL, You P, Su J, Zhu MH, Xie DF, et al. Oncoprotein bmi-1 induces the malignant transformation of hacat cells. J Cell Biochem. 2009;106:16–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Xu CR, Lee S, Ho C, Bommi P, Huang SA, Cheung ST, et al. Bmi1 functions as an oncogene independent of ink4a/arf repression in hepatic carcinogenesis. Mol Cancer Res. 2009;7:1937–45.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee KM, Nguyen C, Ulrich AB, Pour PM, Ouellette MM. Immortalization with telomerase of the nestin-positive cells of the human pancreas. Biochem Biophys Res Commun. 2003;301:1038–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Campbell PM, Groehler AL, Lee KM, Ouellette MM, Khazak V, Der CJ. K-ras promotes growth transformation and invasion of immortalized human pancreatic cells by raf and phosphatidylinositol 3-kinase signaling. Cancer Res. 2007;67:2098–106.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao S, Wang Y, Cao L, Ouellette MM, Freeman JW. Expression of oncogenic k-ras and loss of smad4 cooperate to induce the expression of egfr and to promote invasion of immortalized human pancreas ductal cells. Int J Cancer. 2010;127:2076–87.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Morris JP, Wang SC, Hebrok M. Kras, hedgehog, wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10:683–95.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142:730–3. e739.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen Y, Lian G, Zhang Q, Zeng L, Qian C, Chen S, et al. Overexpression of bmi-1 induces the malignant transformation of gastric epithelial cells in vitro. Oncol Res. 2013;21:33–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  29. 29.
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. Emt and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM. Notch 2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells. Lab Invest. 2005;85:1003–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of twist and bmi-1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2:897–909.CrossRefPubMedGoogle Scholar
  33. 33.
    Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20:1218–49.CrossRefPubMedGoogle Scholar
  34. 34.
    Cano CE, Motoo Y, Iovanna JL. Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. ScientificWorldJournal. 2010;10:1947–57.CrossRefPubMedGoogle Scholar
  35. 35.
    De Craene B, Berx G. Regulatory networks defining emt during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.CrossRefPubMedGoogle Scholar
  36. 36.
    Xu W, Wang Z, Zhang W, Qian K, Li H, Kong D, et al. Mutated k-ras activates cdk8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the wnt/beta-catenin signaling pathway. Cancer Lett. 2015;356:613–27.CrossRefPubMedGoogle Scholar
  37. 37.
    Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M. Role of ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem. 2009;284:245–53.CrossRefPubMedGoogle Scholar
  38. 38.
    Saitoh M, Endo K, Furuya S, Minami M, Fukasawa A, Imamura T, et al. Stat3 integrates cooperative ras and tgf-beta signals that induce snail expression. Oncogene. 2015.Google Scholar
  39. 39.
    Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM, et al. Critical role for transcriptional repressor snail2 in transformation by oncogenic ras in colorectal carcinoma cells. Oncogene. 2010;29:4658–70.CrossRefPubMedGoogle Scholar
  40. 40.
    Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res. 2007;13:4769–76.CrossRefPubMedGoogle Scholar
  41. 41.
    Yin T, Wang C, Liu T, Zhao G, Zha Y, Yang M. Expression of snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res. 2007;141:196–203.CrossRefPubMedGoogle Scholar
  42. 42.
    Knab LM, Ebine K, Chow CR, Raza SS, Sahai V, Patel AP, et al. Snail cooperates with kras g12d in vivo to increase stem cell factor and enhance mast cell infiltration. Mol Cancer Res. 2014;12:1440–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shields MA, Ebine K, Sahai V, Kumar K, Siddiqui K, Hwang RF, et al. Snail cooperates with krasg12d to promote pancreatic fibrosis. Mol Cancer Res. 2013;11:1078–87.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bednar F, Schofield HK, Collins MA, Yan W, Zhang Y, Shyam N, et al. Pasca di Magliano M: Bmi1 is required for the initiation of pancreatic cancer through an ink4a-independent mechanism. Carcinogenesis. 2015;36:730–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rangarajan A, Weinberg RA. Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nat Rev Cancer. 2003;3:952–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Hruban RH, Wilentz RE, Kern SE. Genetic progression in the pancreatic ducts. Am J Pathol. 2000;156:1821–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by k-ras oncogenic activation in pancreatic carcinogenesis. Cancer Res. 2005;65:5045–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Agbunag C, Bar-Sagi D. Oncogenic k-ras drives cell cycle progression and phenotypic conversion of primary pancreatic duct epithelial cells. Cancer Res. 2004;64:5659–63.CrossRefPubMedGoogle Scholar
  49. 49.
    Appleman VA, Ahronian LG, Cai J, Klimstra DS, Lewis BC. Kras(g12d)- and braf(v600e)-induced transformation of murine pancreatic epithelial cells requires mek/erk-stimulated igf1r signaling. Mol Cancer Res. 2012;10:1228–39.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Matsuo Y, Campbell PM, Brekken RA, Sung B, Ouellette MM, Fleming JB, et al. K-ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol Cancer Res. 2009;7:799–808.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Shao-jie Chen
    • 1
    • 2
  • Yin-ting Chen
    • 1
    • 2
  • Lin-juan Zeng
    • 3
  • Qiu-bo Zhang
    • 4
  • Guo-da Lian
    • 1
    • 2
  • Jia-jia Li
    • 1
    • 2
  • Ke-ge Yang
    • 1
    • 2
  • Chu-mei Huang
    • 1
    • 2
  • Ya-qing Li
    • 1
    • 2
  • Zhong-hua Chu
    • 5
  • Kai-hong Huang
    • 1
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of Gastroenterology, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  3. 3.Department of OncologyThe Fifth Affiliated Hospital of Sun Yat-Sen UniversityZhuhaiChina
  4. 4.Department of GastroenterologyLihuili Hospital of Ningbo Medical CenterNingboChina
  5. 5.Department of Gastroenteropancreatic Surgery, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations