Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 9243–9248 | Cite as

Alpinetin targets glioma stem cells by suppressing Notch pathway

  • Jianpeng Wang
  • Zhiyong Yan
  • Xia Liu
  • Shusheng Che
  • Chao Wang
  • Weicheng Yao
Original Article

Abstract

Glioma is among the most common human malignancies with poor prognosis. Glioma stem cells (GSCs) are the culprit of glioma, suggesting that GSCs are potential therapeutic targets. Notch signaling pathway plays a pivotal role for the function of GSCs, implying that suppression of Notch pathway may be an effective strategy for GSC-targeting therapy. In this study, we found that alpinetin, a natural compound, can suppress the proliferation and invasiveness of GSCs and induce apoptosis in GSCs. Immunoblot analysis and luciferase assay revealed that Notch signaling was suppressed by alpinetin. Furthermore, restoration of Notch signaling activity rescued the effect of alpinetin on GSC’s function. The anti-tumor activity of alpinetin was further confirmed in an animal model. Collectively, targeting of GSC by alpinetin is an effective strategy for glioma therapy.

Keywords

Alpinetin Glioma stem cells (GSCs) Notch 

Notes

Funding

This study was supported by the Scientific Research Fund for Excellent Youth in the Affiliated Hospital of Qingdao University (No. 201506).

References

  1. 1.
    Reardon DA, Galanis E, DeGroot JF, Cloughesy TF, Wefel JS, Lamborn KR, et al. Clinical trial end points for high-grade glioma: the evolving landscape. Neuro Oncol. 2011;13(3):353–61. doi: 10.1093/neuonc/noq203.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jackson M, Hassiotou F, Nowak A. Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis. 2015;36(2):177–85. doi: 10.1093/carcin/bgu243.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakano I. Stem cell signature in glioblastoma: therapeutic development for a moving target. J Neurosurg. 2015;122(2):324–30. doi: 10.3171/2014.9.JNS132253.CrossRefPubMedGoogle Scholar
  4. 4.
    Teodorczyk M, Schmidt MH. Notching on cancer's door: Notch signaling in brain tumors. Frontiers in oncology. 2014;4:341. doi: 10.3389/fonc.2014.00341.PubMedGoogle Scholar
  5. 5.
    Colombo M, Galletti S, Garavelli S, Platonova N, Paoli A, Basile A, et al. Notch signaling deregulation in multiple myeloma: a rational molecular target. Oncotarget. 2015;6(29):26826–40. doi: 10.18632/oncotarget.5025.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yadav VR, Prasad S, Sung B, Aggarwal BB. The role of chalcones in suppression of NF-kappaB-mediated inflammation and cancer. Int Immunopharmacol. 2011;11(3):295–309. doi: 10.1016/j.intimp.2010.12.006.CrossRefPubMedGoogle Scholar
  7. 7.
    Yadav VR, Prasad S, Aggarwal BB. Cardamonin sensitizes tumour cells to TRAIL through ROS- and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins. Br J Pharmacol. 2012;165(3):741–53. doi: 10.1111/j.1476-5381.2011.01603.x.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Qin Y, Sun CY, Lu FR, Shu XR, Yang D, Chen L, et al. Cardamonin exerts potent activity against multiple myeloma through blockade of NF-kappaB pathway in vitro. Leuk Res. 2012;36(4):514–20. doi: 10.1016/j.leukres.2011.11.014.CrossRefPubMedGoogle Scholar
  9. 9.
    Park MK, Jo SH, Lee HJ, Kang JH, Kim YR, Kim HJ, et al. Novel suppressive effects of cardamonin on the activity and expression of transglutaminase-2 lead to blocking the migration and invasion of cancer cells. Life Sci. 2013;92(2):154–60. doi: 10.1016/j.lfs.2012.11.009.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim EJ, Kim HJ, Park MK, Kang GJ, Byun HJ, Lee H, et al. Cardamonin suppresses TGF-beta1-Induced epithelial mesenchymal transition via restoring protein phosphatase 2A expression. Biomol Ther. 2015;23(2):141–8. doi: 10.4062/biomolther.2014.117.CrossRefGoogle Scholar
  11. 11.
    Tang Y, Fang Q, Shi D, Niu P, Chen Y, Deng J. mTOR inhibition of cardamonin on antiproliferation of A549 cells is involved in a FKBP12 independent fashion. Life Sci. 2014;99(1–2):44–51. doi: 10.1016/j.lfs.2014.01.066.CrossRefPubMedGoogle Scholar
  12. 12.
    Park S, Gwak J, Han SJ, Oh S. Cardamonin suppresses the proliferation of colon cancer cells by promoting beta-catenin degradation. Biol Pharm Bull. 2013;36(6):1040–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Wu N, Xiao L, Zhao X, Zhao J, Wang J, Wang F, et al. miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett. 2012;586(21):3831–9. doi: 10.1016/j.febslet.2012.08.023.CrossRefPubMedGoogle Scholar
  14. 14.
    Yan Z, Wang J, Wang C, Jiao Y, Qi W, Che S. miR-96/HBP1/Wnt/beta-catenin regulatory circuitry promotes glioma growth. FEBS Lett. 2014;588(17):3038–46. doi: 10.1016/j.febslet.2014.06.017.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, et al. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 2014. doi: 10.1002/mc.22242.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lu Q, Tong B, Luo Y, Sha L, Chou G, Wang Z, et al. Norisoboldine suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-kappaB/Notch1 pathway. PLoS One. 2013;8(12):e81220. doi: 10.1371/journal.pone.0081220.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C. Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther. 2010;9(1):202–10. doi: 10.1158/1535-7163.MCT-09-0771.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Jianpeng Wang
    • 1
  • Zhiyong Yan
    • 1
  • Xia Liu
    • 1
  • Shusheng Che
    • 1
  • Chao Wang
    • 1
  • Weicheng Yao
    • 1
  1. 1.Department of Neurosurgerythe Affiliated Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations