Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 9221–9232 | Cite as

DCT015, a new sorafenib derivate, inhibits tumor growth and angiogenesis in gastric cancer models

  • Wenyan Wang
  • Hui Wang
  • Yingying Ni
  • Zhenming Yao
  • Liang Ye
  • Jingwei Tian
Original Article

Abstract

The objective of this study is to investigate antiproliferative activities against gastric cancer and anti-angiogenesis of DCT015, a novel sorafenib derivate, and potential mechanisms. The effects of DCT015 on proliferation and apoptosis in gastric cancer cells were evaluated by cytotoxicity assays, apoptosis analysis, flow cytometry analysis, and Western blotting assays. The in vivo antitumor effects were carried out in nude mice bearing gastric cancer. On the other hand, the anti-angiogenesis effects of DCT015 were measured by human umbilical vein endothelial cell (HUVEC) proliferation, migration, tube formation, and Western blotting analysis. The results showed that DCT015 inhibited the proliferation, induced the morphological changes of apoptosis, and increased the apoptosis percentage, as well as increased the “sub-G1” population in gastric cancer cells. DCT015 also significantly decreased the tumor volumes and tumor weights in vivo by oral administration. Immunohistochemistry assay demonstrated that DCT015 inhibited tumor growth and neovascularization. In vitro studies found that DCT015 inhibited both MEK/ERK and PI3K/Akt signaling pathways by Western blotting assays. Moreover, DCT015 significantly inhibited VEGF-induced migration and tube formation in HUVECs. Western blotting analysis showed that DCT015 downregulated VEGF-induced VEGFR2 phosphorylation with the decreased phosphorylation of the downstream key proteins. Taken together, our findings highlight that DCT015 is a promising orally anticancer drug for treating gastric cancer.

Keywords

DCT015 Sorafenib Proliferation Angiogenesis Apoptosis Targeted therapy 

Notes

Acknowledgements

We thank Nanjing Luye Sike Pharmaceuticals for providing the compounds. Shandong Luye Pharmaceutical Co. Ltd. is gratefully acknowledged for providing some experiment conditions including the laboratory and some reagents.

Funding

This work was supported by the National Natural Science Foundation of China (no. 81001661), the Shandong Province Young and Middle-Aged Scientists Research Awards Fund (no. BS2009SW012), the National Basic Research Program of China (no. 2012CB724003), the Natural Science Foundation of Shandong Province, China (no. ZR2014HM091), and the Scientific Research Foundation of Binzhou Medical College, Shandong Province, China (no. BY2013KYQD21).

Compliance with ethical standard

Conflict of interest

None

References

  1. 1.
    Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61(5):673–84.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Geng R, Li J. Apatinib for the treatment of gastric cancer. Expert Opin Pharmaco. 2015;16(1):117–22.CrossRefGoogle Scholar
  4. 4.
    Ford HE, Marshall A, Bridgewater JA, Janowitz T, Coxon FY, Wadsley J, et al. Docetaxel versus active symptom control for refractory oesophagogastric adenocarcinoma (COUGAR-02): an open-label, phase 3 randomised controlled trial. Lancet Oncol. 2014;15(1):78–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Riquelme I, Saavedra K, Espinoza JA, Weber H, Garcia P, Nervi B, et al. Molecular classification of gastric cancer: towards a pathway-driven targeted therapy. Oncotarget. 2015;28(6):24750–79.CrossRefGoogle Scholar
  6. 6.
    Shen L, Xu JM, Feng FY, Jiao SC, Wang LW, Li J, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for first-line treatment of HER2-positive advanced gastric or gastroesophageal junction cancer: a Phase III, multi-center, randomized controlled trial, Chinese subreport. Chinese J Oncol. 2013;35(4):295–300.Google Scholar
  7. 7.
    Shah MA. Gastrointestinal cancer: targeted therapies in gastric cancer-the dawn of a new era. Nat Rev Clin Oncol. 2014;11(1):10–1.Google Scholar
  8. 8.
    Thiel A, Ristimaki A. Targeted therapy in gastric cancer. APMIS. 2015;123(5):365–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Raha S, Yumnam S, Hong GE, Lee HJ, Saralamma VV, Park HS, et al. Naringin induces autophagy-mediated growth inhibition by downregulating the PI3K/Akt/mTOR cascade via activation of MAPK pathways in AGS cancer cells. Int J Oncol. 2015;47(3):1061–9.PubMedGoogle Scholar
  10. 10.
    Pratilas CA, Solit DB. Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res. 2010;16(13):3329–34.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–44.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lim SM, Lim JY, Cho JY. Targeted therapy in gastric cancer: personalizing cancer treatment based on patient genome. World J Gastroenterol. 2014;20(8):2042–50.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kudo M. Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma. World J Gastroenterol. 2012;18(42):6005–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7(10):3129–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.CrossRefPubMedGoogle Scholar
  16. 16.
    Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin Cancer Res. 2005;11(15):5472–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Sun W, Powell M, O’Dwyer PJ, Catalano P, Ansari RH, Benson III AB. Phase II study of sorafenib in combination with docetaxel and cisplatin in the treatment of metastatic or advanced gastric and gastroesophageal junction adenocarcinoma: ECOG 5203. J Clin Oncol. 2010;28(18):2947–51.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Du R, Wu S, Lv X, Fang H, Wu S, Kang J. Overexpression of brachyury contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:105.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wu MH, Huang CY, Lin JA, Wang SW, Peng CY, Cheng HC, et al. Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene. 2014;33(13):1725–35.CrossRefPubMedGoogle Scholar
  20. 20.
    Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24(16):2505–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008;40(12):2707–19.CrossRefPubMedGoogle Scholar
  22. 22.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–84.CrossRefPubMedGoogle Scholar
  23. 23.
    Lin Z, Zhang C, Zhang M, Xu D, Fang Y, Zhou Z, et al. Targeting cadherin-17 inactivates Ras/Raf/MEK/ERK signaling and inhibits cell proliferation in gastric cancer. PLoS One. 2014;9(1), e85296.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from bench to bedside. J Hematol Oncol. 2013;6:27.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 2012;3(10):1068–111.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim JH, Go HY, Jin DH, Kim HP, Hong MH, Chung WY, et al. Inhibition of the PI3K-Akt/PKB survival pathway enhanced an ethanol extract of Rhus verniciflua Stokes-induced apoptosis via a mitochondrial pathway in AGS gastric cancer cell lines. Cancer Lett. 2008;265(2):197–205.CrossRefPubMedGoogle Scholar
  27. 27.
    De Luca A, Maiello MR, D’Alessio A, Pergameno M, Normanno N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 2012;16 Suppl 2:S17–27.CrossRefPubMedGoogle Scholar
  28. 28.
    Molhoek KR, Brautigan DL, Slingluff Jr CL. Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 2005;3:39.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fu QH, Zhang Q, Bai XL, Hu QD, Su W, Chen YW, et al. Sorafenib enhances effects of transarterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. J Cancer Res Clin Oncol. 2014;140(8):1429–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Cidon EU, Ellis SG, Inam Y, Adeleke S, Zarif S, Geldart T. Molecular targeted agents for gastric cancer: a step forward towards personalized therapy. Cancers (Basel). 2013;5(1):64–91.CrossRefGoogle Scholar
  31. 31.
    Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, et al. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem. 2000;275(7):5096–103.CrossRefPubMedGoogle Scholar
  32. 32.
    Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res. 2002;90(12):1243–50.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education)Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityYantaiPR China
  2. 2.School of Public Health and ManagementBinzhou Medical UniversityYantaiPR China
  3. 3.Institute of ToxicologyBinzhou Medical UniversityYantaiPR China

Personalised recommendations