Tumor Biology

, Volume 37, Issue 8, pp 10317–10327 | Cite as

Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model

  • Mingyao Meng
  • Wenju Wang
  • Jun Yan
  • Jing Tan
  • Liwei Liao
  • Jianlin Shi
  • Chuanyu Wei
  • Yanhua Xie
  • Xingfang Jin
  • Li Yang
  • Qing Jin
  • Huirong Zhu
  • Weiwei Tan
  • Fang Yang
  • Zongliu Hou
Original Article

Abstract

Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP+ stromal cells which mimicked the FAP+ CAF in vivo. We immunized a breast cancer mouse model with FAP+ stromal cells to perform immunotherapy against FAP+ cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP+ stromal cells whose phenotype was CD11b+/CD34+/Sca-1+/FSP-1+/MHC class I+. Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP+ stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4+ and CD8+ T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP+ CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP+ stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

Keywords

Fibroblast activation protein Cancer-associated fibroblast Immunotherapy Tumor microenvironment Breast cancer model 

Notes

Acknowledgements

This work is supported by grants from the National Natural Science Foundation of China (nos. 81160267, 81360245, and 81460436) and grants from the “Special and Joint Program” of Yunnan Province Science and Technology Department and Kunming Medical University (nos. 2013FB110 and 2015FA008). This study is also funded by “International Collaboration Program” from Yunnan Province Science and Technology Department (2015IA034).

Compliance with ethical standards

Conflicts of interest

None

Reference

  1. 1.
    Masters GA, Krilov L, Bailey HH, Brose MS, Burstein H, Diller LR, et al. Clinical cancer advances 2015: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2015;33(7):786–809. doi: 10.1200/JCO.2014.59.9746.CrossRefPubMedGoogle Scholar
  2. 2.
    Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48. doi: 10.1016/j.immuni.2004.07.017.CrossRefPubMedGoogle Scholar
  3. 3.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi: 10.1038/ni1102-991.CrossRefPubMedGoogle Scholar
  4. 4.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9. doi: 10.1038/25292.CrossRefPubMedGoogle Scholar
  5. 5.
    Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genet Dev. 2008;18(1):27–34. doi: 10.1016/j.gde.2007.12.006.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80. doi: 10.1126/science.aaa6204.CrossRefPubMedGoogle Scholar
  7. 7.
    Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96. doi: 10.1146/annurev.immunol.25.022106.141609.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi: 10.1038/nrc1877.CrossRefPubMedGoogle Scholar
  9. 9.
    Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem. 1999;274(51):36505–12.CrossRefPubMedGoogle Scholar
  10. 10.
    Teichgraber V, Monasterio C, Chaitanya K, Boger R, Gordon K, Dieterle T, et al. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Adv Med Sci. 2015;60(2):264–72. doi: 10.1016/j.advms.2015.04.006.CrossRefPubMedGoogle Scholar
  11. 11.
    Jia J, Martin TA, Ye L, Jiang WG. FAP-alpha (Fibroblast activation protein-alpha) is involved in the control of human breast cancer cell line growth and motility via the FAK pathway. BMC Cell Biol. 2014;15:16. doi: 10.1186/1471-2121-15-16.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;87(18):7235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res. 2005;65(23):11156–63. doi: 10.1158/0008-5472.CAN-05-2805.CrossRefPubMedGoogle Scholar
  14. 14.
    Lo A, Wang LC, Scholler J, Monslow J, Avery D, Newick K, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 2015;75(14):2800–10. doi: 10.1158/0008-5472.CAN-14-3041.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wen Y, Wang CT, Ma TT, Li ZY, Zhou LN, Mu B, et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101(11):2325–32. doi: 10.1111/j.1349-7006.2010.01695.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 2006;116(7):1955–62. doi: 10.1172/JCI26532.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jager D, Renner C, et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26(1):44–8. doi: 10.1159/000069863.PubMedGoogle Scholar
  18. 18.
    Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010;330(6005):827–30. doi: 10.1126/science.1195300.CrossRefPubMedGoogle Scholar
  19. 19.
    Kundig TM, Bachmann MF, DiPaolo C, Simard JJ, Battegay M, Lother H, et al. Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science. 1995;268(5215):1343–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res. 2001;264(1):169–84. doi: 10.1006/excr.2000.5133.CrossRefPubMedGoogle Scholar
  21. 21.
    Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2015. doi: 10.1007/s13277-015-3942-9.
  22. 22.
    Johnsen A, France J, Sy MS, Harding CV. Down-regulation of the transporter for antigen presentation, proteasome subunits, and class I major histocompatibility complex in tumor cell lines. Cancer Res. 1998;58(16):3660–7.PubMedGoogle Scholar
  23. 23.
    Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181(8):5791–802.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. doi: 10.1038/nm.3394.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52. doi: 10.1038/nrc2618.CrossRefPubMedGoogle Scholar
  26. 26.
    De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell. 2005;8(3):211–26. doi: 10.1016/j.ccr.2005.08.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 1995;130(2):393–405.CrossRefPubMedGoogle Scholar
  28. 28.
    Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol. 1997;273(4 Pt 2):F563–74.PubMedGoogle Scholar
  29. 29.
    Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, et al. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res. 2005;65(9):3772–80. doi: 10.1158/0008-5472.CAN-04-4510.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis. 2014;5, e1155. doi: 10.1038/cddis.2014.122.CrossRefPubMedGoogle Scholar
  31. 31.
    Zinkernagel RM. On cross-priming of MHC class I-specific CTL: rule or exception? Eur J Immunol. 2002;32(9):2385–92. doi: 10.1002/1521-4141(200209)32:9<2385::AID-IMMU2385>3.0.CO;2-V.CrossRefPubMedGoogle Scholar
  32. 32.
    Fonteneau JF, Kavanagh DG, Lirvall M, Sanders C, Cover TL, Bhardwaj N, et al. Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood. 2003;102(13):4448–55. doi: 10.1182/blood-2003-06-1801.CrossRefPubMedGoogle Scholar
  33. 33.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48. doi: 10.1016/j.cell.2005.02.034.CrossRefPubMedGoogle Scholar
  34. 34.
    Pinto MP, Badtke MM, Dudevoir ML, Harrell JC, Jacobsen BM, Horwitz KB. Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res. 2010;70(7):2655–64. doi: 10.1158/0008-5472.CAN-09-4373.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell. 2011;22(20):3791–800. doi: 10.1091/mbc.E11-05-0393.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Mingyao Meng
    • 1
    • 2
  • Wenju Wang
    • 1
    • 2
  • Jun Yan
    • 1
  • Jing Tan
    • 1
  • Liwei Liao
    • 1
  • Jianlin Shi
    • 1
    • 2
  • Chuanyu Wei
    • 1
    • 2
  • Yanhua Xie
    • 1
    • 2
  • Xingfang Jin
    • 1
    • 2
  • Li Yang
    • 1
  • Qing Jin
    • 1
  • Huirong Zhu
    • 1
  • Weiwei Tan
    • 1
    • 2
  • Fang Yang
    • 1
    • 2
    • 3
  • Zongliu Hou
    • 1
    • 2
  1. 1.Department of Central LaboratoryYan’an Affiliated Hospital of Kunming Medical UniversityKunmingChina
  2. 2.Yunnan Cell Biology and Clinical Translation Research CenterKunmingChina
  3. 3.Kunming Medical UniversityKunmingChina

Personalised recommendations