Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 9387–9397 | Cite as

Are SMAD7 rs4939827 and CHI3L1 rs4950928 polymorphisms associated with colorectal cancer in Egyptian patients?

  • Amal Ahmed Abd El-Fattah
  • Nermin Abdel Hamid Sadik
  • Olfat Gamil Shaker
  • Amal Mohamed Kamal
Original Article

Abstract

A wide variety of genes have been associated with colorectal cancer (CRC) development and progression. The SMAD7 gene encodes an intracellular protein, which inhibits the transforming growth factor beta (TGF-β) signaling pathway, thereby having a key role in the control of neoplastic processes in various organs. The CHI3L1 gene encodes glycoprotein YKL-40, which plays a role in cell proliferation, anti-apoptosis, and angiogenesis. The present study aimed to evaluate the association of single nucleotide polymorphisms (SNPs) SMAD7 rs4939827 and CHI3L1 rs4950928, as well as circulating TGFβ-1 and YKL-40 levels with CRC in an Egyptian population of 77 CRC patients and 36 healthy controls. Polymorphisms in the SMAD7 rs4939827 and the CHI3L1 rs4950928 genes were determined using the real-time polymerase chain reaction (RT-PCR). Both the SMAD7 rs4939827 TT genotype and the CHI3L1 rs4950928 C allele were associated with the rectal but not the colon cancer. In addition, the C allele of both SMAD7 rs4939827 and CHI3L1 rs4950928 was associated with increased serum levels of TGF-β1 and YKL-40, respectively. In conclusion, our data suggest that SMAD7 rs4939827 and CHI3L1 rs4950928 SNPs have no significant association with CRC. A significant association of SNP in SMAD7 rs4939827 and CHI3L1 rs4950928 was revealed between the rectal cancer and colon cancer patients.

Keywords

Colorectal cancer Single nucleotide polymorphism SMAD7 TGF-β1 CHI3L1 YKL-40 

Abbreviations

CDC

Crohn’s disease

CDK

Cyclin-dependent kinase

CEA

Carcinoembryonic antigen

CEU

Utah residents with ancestry from northern and western Europe

CHI3L1

Chitinase 3-like 1

CRC

Colorectal cancer

EGF

Epidermal growth factor

GWAS

Genome-wide association studies

HC gp-39

Human cartilage glycoprotein-39

IBD

Inflammatory bowel disease

IL-1R/TLR

Interleukin-1/Toll-like receptor

IRAK1

Interleukin-1 receptor associated kinase 1

MAPK

Mitogen-activated protein kinase

ROC

Receiver operating characteristic

PI-3 K

Phosphoinositide kinase-3

SNPs

Single nucleotide polymorphisms

TGF-β

Transforming growth factor-β

Notes

Acknowledgments

The authors acknowledge the financial assistance provided by the Faculty of Pharmacy, Cairo University, Cairo, Egypt. We gratefully acknowledge the Tropical Medicine Department, Kasr Al-Aini Hospital, Cairo University.

Compliance with ethical standards

Conflicts of interest

None

Ethical approval

All procedures performed in the study were in accordance with the ethical standards of the Faculty of Pharmacy, Cairo University committee, and with the 1975 Helsinki Declaration.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 2009;10:353–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Tarraga Lopez PJ, Alberto JS, Rodriguez-Montes JA. Primary and secondary prevention of colorectal cancer. Clin Med Insights Gastroenterol. 2014;7:33–46.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shihata SR, Morgan MF. Abdelmalak E a. Relationship between GSTM1 and CYP1A1 polymorphisms in colorectal carcinoma Egyptian patients. Comp Clin Path. 2011;22:119–24.CrossRefGoogle Scholar
  5. 5.
    Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res. 2012;72:2036–44.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24:1207–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Leslie A, Carey FA, Pratt NR, Steele RJC. The colorectal adenoma-carcinoma sequence. Br J Surg. 2002;89:845–60.CrossRefPubMedGoogle Scholar
  8. 8.
    Boland CR. Chronic inflammation, colorectal cancer and gene polymorphisms. Dig Dis. 2010;28:590–5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer. N Engl J Med. 2000;343:78–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998;8:1229–31.PubMedGoogle Scholar
  11. 11.
    Fareed M, Afzal M. Single nucleotide polymorphism in genome-wide association of human population: a tool for broad spectrum service. Egypt J Med Hum Genet. 2012;14:123–34.CrossRefGoogle Scholar
  12. 12.
    Jing L, Su L, Ring BZ. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review. PLoS One. 2014;9:e97522.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Massagué J. TGFβ in cancer. Cell. 2008;134:215–30.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gulubova M, Manolova I, Ananiev J, Julianov A, Yovchev Y, Peeva K. Role of TGF-beta1, its receptor TGFβRII, and smad proteins in the progression of colorectal cancer. Int J Color Dis. 2010;25:591–9.CrossRefGoogle Scholar
  15. 15.
    Yan X, Chen Y-G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434:1–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Marafini I, Sedda S, Di Fusco D, Figliuzzi MM, Pallone F, Monteleone G. Smad7 sustains inflammation in the gut: from bench to bedside. J Clin Cell Immunol. 2014;5:3–7.Google Scholar
  17. 17.
    Stolfi C, De Simone V, Colantoni A, Franzè E, Ribichini E, Fantini MC, et al. A functional role for Smad7 in sustaining colon cancer cell growth and survival. Cell Death Dis. 2014;5:e1073.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stolfi C, Marafini I, De Simone V, Pallone F, Monteleone G. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci. 2013;14:23774–90.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhong R, Liu L, Zou L, Sheng W, Zhu B, Xiang H, et al. Genetic variations in the TGFβ signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis. 2013;34:936–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Phipps AI, Newcomb PA, Garcia-Albeniz X, Hutter CM, White E, Fuchs CS, et al. Association between colorectal cancer susceptibility loci and survival time after diagnosis with colorectal cancer. Gastroenterology. 2012;143:51–4.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Passarelli MN, Coghill AE, Hutter CM, Zheng Y, Makar KW, Potter JD, et al. Common colorectal cancer risk variants in SMAD7 are associated with survival among prediagnostic nonsteroidal anti-inflammatory drug users: a population-based study of postmenopausal women. Genes Chromosomes Cancer. 2011;50:875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet. 2007;39:1315–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Tenesa A, Farrington SM, Prendergast JGD, Porteous ME, Walker M, Haq N, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008;40:631–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tomlinson IPM, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Hakala BE. White C, Recklies a. D. Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem. 1993;268:25803–10.PubMedGoogle Scholar
  26. 26.
    Rehli M, Krause SW, Andreesen R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics. 1997;43:221–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Ngernyuang N, Francescone RA, Jearanaikoon P, Daduang J, Supoken A, Yan W, et al. Chitinase 3 like 1 is associated with tumor angiogenesis in cervical cancer. Int J Biochem Cell Biol. 2014;51:1–8. Elsevier Ltd.CrossRefGoogle Scholar
  28. 28.
    Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang M-J, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.CrossRefPubMedGoogle Scholar
  29. 29.
    Shao R, Hamel K, Petersen L, Cao QJ, Arenas RB, Bigelow C, et al. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009;28:4456–68. Nature Publishing Group.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Renkema GH, Boot RG, Au FL, Donker-Koopman WE, Strijland A, Muijsers AO, et al. Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem. 1998;251:504–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, et al. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 2012;31:3111–23. Nature Publishing Group.CrossRefPubMedGoogle Scholar
  32. 32.
    Vind I, Johansen JS, Price PA, Munkholm P. Serum YKL-40, a potential new marker of disease activity in patients with inflammatory bowel disease. Scand J Gastroenterol. 2003;38:599–605.CrossRefPubMedGoogle Scholar
  33. 33.
    Cintin C, Johansen JS, Christensen IJ, Price PA, Sørensen S, Nielsen HJ. Serum YKL-40 and colorectal cancer. Br J Cancer. 1999;79:1494–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shaker OG, Nassar YH, Kamel MM, Gad ZS, Elantably AM. Chitinase-3-like protein1 (YKL-40) as biomarker in serum of egyptian breast cancer females. Biochem Anal Biochem. 2014;03:1000149.Google Scholar
  35. 35.
    Schultz NA, Christensen IJ, Werner J, Giese N, Jensen BV, Larsen O, et al. Diagnostic and prognostic impact of circulating YKL-40, IL-6, and CA 19.9 in patients with pancreatic cancer. PLoS One. 2013;8:e67059.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nielsen KR, Steffensen R, Boegsted M, Baech J, Lundbye-Christensen S, Hetland ML, et al. Promoter polymorphisms in the chitinase 3-like 1 gene influence the serum concentration of YKL-40 in Danish patients with rheumatoid arthritis and in healthy subjects. Arthritis Res Ther. 2011;13:R109.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358:1682–91.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Berres M-L, Papen S, Pauels K, Schmitz P, Zaldivar MM, Hellerbrand C, et al. A functional variation in CHI3L1 is associated with severity of liver fibrosis and YKL-40 serum levels in chronic hepatitis C infection. J Hepatol. 2009;50:370–6. European Association for the Study of the Liver.CrossRefPubMedGoogle Scholar
  39. 39.
    Ortega H, Prazma C, Suruki RY, Li H, Anderson WH. Association of CHI3L1 in African-Americans with prior history of asthma exacerbations and stress. J Asthma. 2013;50:7–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Lin Y-S, Liu Y-F, Chou Y-E, Yang S-F, Chien M-H, Wu C-H, et al. Correlation of chitinase 3-like 1 single nucleotide polymorphisms and haplotypes with uterine cervical cancer in Taiwanese women. PLoS One. 2014;9. e104038.Google Scholar
  41. 41.
    Boisselier B, Marie ÆY, El ÆS, Gentian HÆ, Iershov A, Kavsan ÆV, et al. No association of (- 131C/G ) variant of CHI3L1 gene with risk of glioblastoma and prognosis. J Neuro-oncol. 2009;94:169–72.CrossRefGoogle Scholar
  42. 42.
    Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79:123–30.PubMedGoogle Scholar
  43. 43.
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Kantor ED, Giovannucci EL. Gene-diet interactions and their impact on colorectal cancer risk. Curr Nutr Rep. 2014;4:13–21.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Curtin K, Lin W-Y, George R, Katory M, Shorto J, Cannon-Albright LA, et al. Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev. 2009;18:616–21.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Boulay JL, Mild G, Reuter J, Lagrange M, Terracciano L, Lowy A, et al. Combined copy status of 18q21 genes in colorectal cancer shows frequent retention of SMAD7. Genes Chromosomes Cancer. 2001;31:240–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Sadeghi RN, Damavand B, Vahedi M, Reza S, Zojazi H, Molaei M, et al. Detection of p53 common intron polymorphisms in patients with gastritis lesions from Iran. Asian Pac J Cancer Prev. 2013;14:91–6.CrossRefGoogle Scholar
  48. 48.
    Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2002;30:13–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Li X, Yang X-X, Hu N-Y, Sun J-Z, Li F-X, Li M. A risk-associated single nucleotide polymorphism of SMAD7 is common to colorectal, gastric, and lung cancers in a Han Chinese population. Mol Biol Rep. 2011;38:5093–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Mates IN, Jinga V, Csiki IE, Mates D, Dinu D, Constantin A, et al. Single nucleotide polymorphisms in colorectal cancer: associations with tumor site and TNM stage. J Gastrointestin Liver Dis. 2012;21:45–52.PubMedGoogle Scholar
  51. 51.
    Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut. 2011;60:116–29.CrossRefPubMedGoogle Scholar
  52. 52.
    Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin Cancer Res. 2007;13:5262–70.CrossRefPubMedGoogle Scholar
  53. 53.
    Yang L, Pang Y, Moses HL. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31:220–7. Elsevier Ltd.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li MO, Flavell RA. TGF-β: a master of all T cell trades. Cell. 2008;134:392–404.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee YS, Kim JH, Kim ST, Kwon JY, Hong S, Kim SJ, et al. Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem Biophys Res Commun. 2010;393:836–43. Elsevier Inc.CrossRefPubMedGoogle Scholar
  56. 56.
    Monteleone G, Kumberova A, Croft NM, Mckenzie C, Steer HW, Macdonald TT. Blocking Smad7 restores TGF- β 1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108:523–6.CrossRefGoogle Scholar
  57. 57.
    Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s Disease. Mol Ther. 2012;20:870–6.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Landström M, Heldin NE, Bu S, Hermansson A, Itoh S, ten Dijke P, et al. Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr Biol. 2000;10:535–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenicity by blocking TGF-β-induced growth inhibition and apoptosis. Exp Cell Res. 2005;307:231–46.CrossRefPubMedGoogle Scholar
  60. 60.
    Shim KS, Kim KH, Han WS, Park EB. Elevated serum levels of transforming growth factor-beta1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer. 1999;85:554–61.CrossRefPubMedGoogle Scholar
  61. 61.
    Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110:375–82.CrossRefPubMedGoogle Scholar
  62. 62.
    Xiong B, Gong L-L, Zhang F, Hu M-B, Yuan H-Y. TGF beta1 expression and angiogenesis in colorectal cancer tissue. World J Gastroenterol. 2002;8:496–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13:788–99. Nature Publishing Group.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Goumans M-J, Fr L, Valdimarsdottir VG. Controlling the angiogenic switch a balance between two distinct TGF-β receptor signaling pathways. Trends Cardiovasc Med. 2003;13:301–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22. Elsevier Inc.CrossRefPubMedGoogle Scholar
  66. 66.
    Mizoguchi E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology. 2006;130:398–411.CrossRefPubMedGoogle Scholar
  67. 67.
    Kawada M, Chen C-C, Arihiro A, Nagatani K, Watanabe T, Mizoguchi E. Chitinase 3-like-1 enhances bacterial adhesion to colonic epithelial cells through the interaction with bacterial chitin-binding protein. Lab Investig. 2008;88:883–95.CrossRefPubMedGoogle Scholar
  68. 68.
    Schimpl M, Rush CL, Betou M, Eggleston IM, Recklies AD, Aalten V, et al. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem J. 2012;446:149–57.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kamba A, Lee I, Mizoguchi E. Potential association between TLR4 and chitinase 3-like 1 (CHI3L1/YKL-40) signaling on colonic epithelial cells in inflammatory bowel disease and colitis-associated cancer. Curr Mol Med. 2013;13:1110–21.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bergmann C, Bachmann HS, Bankfalvi A, Lotfi R, Pütter C, Wild CA, et al. Toll-like receptor 4 single-nucleotide polymorphisms Asp299Gly and Thr399Ile in head and neck squamous cell carcinomas. J Transl Med. 2011;9:139. BioMed Central Ltd.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Eurich K, Segawa M, Toei-Shimizu S, Mizoguch E. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World J Gastroenterol. 2009;15:5249–59.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Edlund S, Lee SY, Grimsby S, Zhang S, Aspenstro P, Heldin C-H, et al. Interaction between Smad7 and beta -catenin : importance for transforming growth factor beta -induced apoptosis. Mol Cell Biochem. 2005;25:1475–88.CrossRefGoogle Scholar
  73. 73.
    Viñals F, Pouysségur J. Transforming growth factor β 1 ((TGF- β 1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF- α signaling. Mol Cell Biol. 2001;21:7218–30.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    He CH, Lee CG, Dela Cruz CS, Lee C-M, Zhou Y, Ahangari F, et al. Chitinase 3-like 1 regulates cellular and tissue responses via IL-13 receptor α2. Cell Rep. 2013;4:830–41. The Authors.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Johansen JS, Christensen IJ, Jorgensen LN, Olsen J, Rahr HB, Nielsen KT, et al. Serum YKL-40 in risk assessment for colorectal cancer: a prospective study of 4,496 subjects at risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2015;24:621–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Cintin C, Johansen JS, Christensen IJ, Price PA, Sørensen S, Nielsen HJ. High serum YKL-40 level after surgery for colorectal carcinoma is related to short survival. Cancer. 2002;95:267–74.CrossRefPubMedGoogle Scholar
  77. 77.
    Kjaergaard AD, Johansen JS, Nordestgaard BG, Bojesen SE. Genetic variants in CHI3L1 influencing YKL-40 levels: resequencing 900 individuals and genotyping 9000 individuals from the general population. J Med Genet. 2013;50:831–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Libreros S, Garcia-Areas R, Iragavarapu-Charyulu V. CHI3L1 plays a role in cancer through enhanced production of pro-inflammatory/pro-tumorigenic and angiogenic factors. Immunol Res. 2013;57:99–105.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Yamamori H, Hashimoto R, Ohi K, Yasuda Y, Fukumoto M, Kasahara E, et al. A promoter variant in the chitinase 3-like 1 gene is associated with serum YKL-40 level and personality trait. Neurosci Lett. 2012;513:204–8. Elsevier Ireland Ltd.CrossRefPubMedGoogle Scholar
  80. 80.
    Zhao X, Tang R, Gao B, Shi Y, Zhou J, Guo S, et al. Functional variants in the promoter region of Chitinase 3 – Like 1 (CHI3L1) and susceptibility to schizophrenia. Am J Hum Genet. 2007;80:12–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Jiffri EH, Elhawary NA. The impact of common tumor necrosis factor haplotypes on the development of asthma in children: an Egyptian model. Genet Test Mol Biomarkers. 2011;15:293–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Amal Ahmed Abd El-Fattah
    • 1
  • Nermin Abdel Hamid Sadik
    • 1
  • Olfat Gamil Shaker
    • 2
  • Amal Mohamed Kamal
    • 1
  1. 1.Biochemistry Department, Faculty of PharmacyCairo UniversityCairoEgypt
  2. 2.Medical Biochemistry and Molecular Biology Department, Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations