Tumor Biology

, Volume 37, Issue 7, pp 9635–9648 | Cite as

Is cholesterol a mediator of cold-induced cancer?

  • Chandi C. Mandal
  • Ankit Sharma
  • Mahaveer S. Panwar
  • James A. Radosevich
Original Article

Abstract

Many factors such as smoking, obesity, and high fat have been either directly or indirectly linked to cancer deaths and/or incidences. Similarly, abnormal serum cholesterol levels have been assigned as a risk factor for cancer, but some studies show a discrepant result. To resolve this discrepancy, we have analyzed cholesterol data of 166 countries. Univariate analysis showed a positive correlation between serum average total cholesterol (ATC) and overall cancer mortality rate (CMR) [tau = 0.277, z = 5.19, p < 0.0001]. It was also observed that a similar positive correlation was found between ATC and different anatomical site-specific CMRs in lung, bladder, ovarian, breast, and pancreatic cancers. Our recent published data documented an existence of a negative correlation between average annual temperature (AAT) and overall CMR, as well as CMR of the abovementioned anatomical site-specific cancers. Statistical analysis further shows a negative correlation between AAT and ATC, similar to that of AAT and CMR. The resulting patterns of univariate analysis between AAT and CMR are almost identical with AAT and ATC, when this analysis was performed every 2 °C of AAT increment for all countries. Moreover, geographical location of the top 50 countries having the highest CMR is almost similar to the top 50 countries having the highest ATC. Similarly, the least 50 countries having the lowest CMR are located in the same geographical region, similar to the least 50 countries having the lowest ATC. These data along with other literature reports suggest that cholesterol could be a mediator of cold-induced cancer mortality.

Keywords

Environmental temperature Cancer mortality rate Cholesterol Geographical location Cancer-causing factors 

Notes

Acknowledgments

Authors thank to Smita Majumder (Department of Mathematics, Central University of Rajasthan, India) for her support in data collection and statistical analysis. CCM is supported by UGC [30-49/2014 (BSR)], DBT [6242-P9/RGCB/PMD/DBT/CCML/2015], and Central University of Rajasthan, India.

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2016_4799_MOESM1_ESM.pdf (292 kb)
Table S1 (PDF 291 kb)
13277_2016_4799_MOESM2_ESM.pdf (284 kb)
Table S2 (PDF 284 kb)
13277_2016_4799_MOESM3_ESM.pdf (210 kb)
Table S3 (PDF 209 kb)
13277_2016_4799_MOESM4_ESM.pdf (225 kb)
Table S4 (PDF 224 kb)
13277_2016_4799_MOESM5_ESM.pdf (289 kb)
Table S5 (PDF 288 kb)
13277_2016_4799_MOESM6_ESM.pdf (163 kb)
Fig. S1 (PDF 162 kb)
13277_2016_4799_MOESM7_ESM.pdf (205 kb)
Fig. S2 (PDF 204 kb)
13277_2016_4799_MOESM8_ESM.pdf (153 kb)
Fig. S3 (PDF 153 kb)

References

  1. 1.
    McGranahan N, Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell. 2015;27(1):15–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432(7015):332–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.CrossRefPubMedGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.CrossRefPubMedGoogle Scholar
  7. 7.
    Sieber OM, Heinimann K, Tomlinson IP. Genomic instability—the engine of tumorigenesis? Nat Rev Cancer. 2003;3(9):701–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;19(11):1438–49.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee H-W, Choi H-J, Ha S-J, Lee K-T, Kwon Y-G. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochimica et Biophysica Acta (BBA)-Rev Cancer. 2013;1835(2):170–9.CrossRefGoogle Scholar
  14. 14.
    Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. 2005;7(6):513–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Whiteside T. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Minamoto T, Mai M, Ronai ZE. Environmental factors as regulators and effectors of multistep carcinogenesis. Carcinogenesis. 1999;20(4):519–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3.PubMedGoogle Scholar
  19. 19.
    Herceg Z, Paliwal A. Epigenetic mechanisms in hepatocellular carcinoma: how environmental factors influence the epigenome. Mutat Res Rev Mutat Res. 2011;727(3):55–61.CrossRefGoogle Scholar
  20. 20.
    Rønnov-Jessen L, Bissell MJ. Breast cancer by proxy: can the microenvironment be both the cause and consequence? Trends Mol Med. 2009;15(1):5–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Sasco A, Secretan M, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer. 2004;45:S3–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Freedman LS, Clifford C, Messina M. Analysis of dietary fat, calories, body weight, and the development of mammary tumors in rats and mice: a review. Cancer Res. 1990;50(18):5710–9.PubMedGoogle Scholar
  23. 23.
    Lehrer S, Rosenzweig KE. Cold climate is a risk factor for thyroid cancer. Clinical Thyroidology. 2014;26(10):273–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60(4):207–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Kiberstis PA. Cholesterol and cancer. Sci Signal. 2013;6(304):ec292-ec.CrossRefGoogle Scholar
  27. 27.
    Mandal C. Targeting intracellular cholesterol is a novel therapeutic strategy for cancer treatment. J Cancer Sci Ther. 2014;6.Google Scholar
  28. 28.
    Mandal CC. High cholesterol deteriorates bone health: new insights into molecular mechanisms. Front Endocrinol. 2015;6Google Scholar
  29. 29.
    Sharma A, Verma HK, Joshi S, Panwar MS, Mandal CC. A link between cold environment and cancer. Tumor Biol. 2015:1-12.Google Scholar
  30. 30.
    Kokolus KM, Capitano ML, Lee C-T, Eng JW-L, Waight JD, Hylander BL, et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci. 2013;110(50):20176–81.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Du G, Zhao B, Zhang Y, Sun T, Liu W, Li J, et al. Hypothermia activates adipose tissue to promote malignant lung cancer progression. PLoS One. 2013;8(8):e72044.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Eng JWL, Reed CB, Kokolus KM, Pitoniak R, Utley A, Bucsek MJ et al. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nat Commun. 2015;6. doi: 10.1038/ncomms7426.
  33. 33.
    Nelson KE, Kmush B, Labrique AB. The epidemiology of hepatitis E virus infections in developed countries and among immunocompromised patients. Expert Rev Anti Infect Ther. 2011;9(12):1133–48.CrossRefPubMedGoogle Scholar
  34. 34.
    Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30:F12–23.CrossRefPubMedGoogle Scholar
  35. 35.
    Hunt R, Xiao S, Megraud F, Leon-Barua R, Bazzoli F, Van der Merwe S, et al. Helicobacter pylori in developing countries. World Gastroenterology Organisation global guideline. J Gastrointestin Liver Dis. 2011;20(3):299–304.PubMedGoogle Scholar
  36. 36.
    Ravnskov U. High cholesterol may protect against infections and atherosclerosis. QJM. 2003;96(12):927–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Wunder C, Churin Y, Winau F, Warnecke D, Vieth M, Lindner B, et al. Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med. 2006;12(9):1030–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Mattock M, Caunce M. Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clin Sci. 1994;86:43–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Ravussin Y, Xiao C, Gavrilova O, Reitman ML. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice. PLoS One. 2014;9(1):e85876.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 2013;18(1):118–29.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gordon DJ, Hyde J, Trost DC, Whaley FS, Hannan PJ, Jacobs DR, et al. Cyclic seasonal variation in plasma lipid and lipoprotein levels: the lipid research clinics coronary primary prevention trial placebo group. J Clin Epidemiol. 1988;41(7):679–89.CrossRefPubMedGoogle Scholar
  42. 42.
    Ockene IS, Chiriboga DE, Stanek III EJ, Harmatz MG, Nicolosi R, Saperia G, et al. Seasonal variation in serum cholesterol levels: treatment implications and possible mechanisms. Arch Intern Med. 2004;164(8):863–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen H, Qin S, Wang M, Zhang T, Zhang S. Association between cholesterol intake and pancreatic cancer risk: evidence from a meta-analysis. Sci Rep. 2015;5:8243.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hu J, La Vecchia C, De Groh M, Negri E, Morrison H, Mery L. Dietary cholesterol intake and cancer. Ann Oncol. 2012;23(2):491–500.CrossRefPubMedGoogle Scholar
  45. 45.
    Kimura Y, Sumiyoshi M. High-fat, high-sucrose, and high-cholesterol diets accelerate tumor growth and metastasis in tumor-bearing mice. Nutr Cancer. 2007;59(2):207–16.CrossRefPubMedGoogle Scholar
  46. 46.
    McDonnell D, Chang C-Y, Nelson E. The estrogen receptor as a mediator of the pathological actions of cholesterol in breast cancer. Climacteric. 2014;17(S2):60–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    dos Santos CR, Fonseca I, Dias S, de Almeida JM. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer. 2014;14(1):132.CrossRefGoogle Scholar
  48. 48.
    Wirehn AB, Tornberg S, Carstensen J. Serum cholesterol and testicular cancer incidence in 45,000 men followed for 25 years. Br J Cancer. 2005;92(9):1785–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Morote J, Celma A, Planas J, Placer J, de Torres I, Olivan M, et al. Role of serum cholesterol and statin use in the risk of prostate cancer detection and tumor aggressiveness. Int J Mol Sci. 2014;15(8):13615–23.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pelton K, Freeman MR, Solomon KR. Cholesterol and prostate cancer. Curr Opin Pharmacol. 2012;12(6):751–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mondul AM, Weinstein SJ, Virtamo J, Albanes D. Serum total and HDL cholesterol and risk of prostate cancer. Cancer Causes Control. 2011;22(11):1545–52.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Melvin JC, Seth D, Holmberg L, Garmo H, Hammar N, Jungner I, et al. Lipid profiles and risk of breast and ovarian cancer in the Swedish AMORIS study. Cancer Epidemiol Biomark Prev. 2012;21(8):1381–4.CrossRefGoogle Scholar
  53. 53.
    Lindemann K, Vatten LJ, Ellstrøm‐Engh M, Eskild A. Serum lipids and endometrial cancer risk: results from the HUNT‐II study. Int J Cancer. 2009;124(12):2938–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Kritchevsky SB, Kritchevsky D. Serum cholesterol and cancer risk: an epidemiologic perspective. Annu Rev Nutr. 1992;12(1):391–416.CrossRefPubMedGoogle Scholar
  55. 55.
    Cambien F, Ducimetiere P, Richard J. Total serum cholesterol and cancer mortality in a middle-aged male population. Am J Epidemiol. 1980;112(3):388–94.CrossRefPubMedGoogle Scholar
  56. 56.
    Nago N, Ishikawa S, Goto T, Kayaba K. Low cholesterol is associated with mortality from stroke, heart disease, and cancer: the Jichi Medical School cohort study. J Epidemiol. 2011;21(1):67–74.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Knekt P, Reunanen A, Aromaa A, Heliövaara M, Hakulinen T, Hakama M. Serum cholesterol and risk of cancer in a cohort of 39,000 men and women. J Clin Epidemiol. 1988;41(6):519–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Kitahara CM, de González AB, Freedman ND, Huxley R, Mok Y, Jee SH, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29(12):1592–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2012;367(19):1792–802. doi: 10.1056/NEJMoa1201735.CrossRefPubMedGoogle Scholar
  60. 60.
    Neil A, Cooper J, Betteridge J, Capps N, McDowell I, Durrington P, et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29(21):2625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mandal CC, Ghosh-Choudhury N, Yoneda T, Choudhury GG. Simvastatin prevents skeletal metastasis of breast cancer by an antagonistic interplay between p53 and CD44. J Biol Chem. 2011;286(13):11314–27. doi: 10.1074/jbc.M110.193714.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhuryz G. Simvastatin induces derepression of PTEN expression via NFkappaB to inhibit breast cancer cell growth. Cell Signal. 2010;22(5):749–58. doi: 10.1016/j.cellsig.2009.12.010.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Park YH, Jung HH, Ahn JS, Im YH. Statin induces inhibition of triple negative breast cancer (TNBC) cells via PI3K pathway. Biochem Biophys Res Commun. 2013;439(2):275–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Bababeygy SR, Polevaya NV, Youssef S, Sun A, Xiong A, Prugpichailers T, et al. HMG-CoA reductase inhibition causes increased necrosis and apoptosis in an in vivo mouse glioblastoma multiforme model. Anticancer Res. 2009;29(12):4901–8.PubMedGoogle Scholar
  65. 65.
    Liu H, Wang Z, Li Y, Li W, Chen Y. Simvastatin prevents proliferation and bone metastases of lung adenocarcinoma in vitro and in vivo. Neoplasma. 2013;60(3):240–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Khurana V, Caldito G, Ankem M. Statins might reduce risk of renal cell carcinoma in humans: case-control study of 500,000 veterans. Urology. 2008;71(1):118–22. doi: 10.1016/j.urology.2007.08.039.CrossRefPubMedGoogle Scholar
  67. 67.
    Singh PP, Singh S. Statins and risk reduction in hepatocellular carcinoma: fact or fiction? J Clin Oncol. 2012;30(20):2569–70. doi: 10.1200/JCO.2012.43.2179.CrossRefPubMedGoogle Scholar
  68. 68.
    Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology. 2013;144(2):323–32. doi: 10.1053/j.gastro.2012.10.005.CrossRefPubMedGoogle Scholar
  69. 69.
    Kuoppala J, Lamminpaa A, Pukkala E. Statins and cancer: a systematic review and meta-analysis. Eur J Cancer. 2008;44(15):2122–32. doi: 10.1016/j.ejca.2008.06.025.CrossRefPubMedGoogle Scholar
  70. 70.
    Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996;335(14):1001–9. doi: 10.1056/NEJM199610033351401.CrossRefPubMedGoogle Scholar
  71. 71.
    Dawwas MF. Statin use and reduced cancer-related mortality. N Engl J Med. 2013;368(6):574–5. doi: 10.1056/NEJMc1214827#SA2.CrossRefPubMedGoogle Scholar
  72. 72.
    Klop C, Driessen JH, de Vries F. Statin use and reduced cancer-related mortality. N Engl J Med. 2013;368(6):574. doi: 10.1056/NEJMc1214827#SA1.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhong S, Zhang X, Chen L, Ma T, Tang J, Zhao J. Statin use and mortality in cancer patients: systematic review and meta-analysis of observational studies. Cancer Treat Rev. 2015;41(6):554–67.CrossRefPubMedGoogle Scholar
  74. 74.
    Martin BJ, van Golen KL. A comparison of cholesterol uptake and storage in inflammatory and noninflammatory breast cancer cells. Int J Breast Cancer. 2012;2012:412581. doi: 10.1155/2012/412581.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Smith B, Land H. Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep. 2012;2(3):580–90. doi: 10.1016/j.celrep.2012.08.011.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Dessi S, Batetta B, Pulisci D, Spano O, Anchisi C, Tessitore L, et al. Cholesterol content in tumor tissues is inversely associated with high-density lipoprotein cholesterol in serum in patients with gastrointestinal cancer. Cancer. 1994;73(2):253–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem. 2004;91(1):54–69. doi: 10.1002/jcb.10724.CrossRefPubMedGoogle Scholar
  78. 78.
    Llaverias G, Danilo C, Mercier I, Daumer K, Capozza F, Williams TM, et al. Role of cholesterol in the development and progression of breast cancer. Am J Pathol. 2011;178(1):402–12. doi: 10.1016/j.ajpath.2010.11.005.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Notarnicola M, Messa C, Pricci M, Guerra V, Altomare DF, Montemurro S, et al. Up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in left-sided human colon cancer. Anticancer Res. 2004;24(6):3837–42.PubMedGoogle Scholar
  80. 80.
    Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L, Masterson T, et al. Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem. 2010;82(9):3430–4.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hart J. Association between air temperature and cancer death rates in Florida: an ecological study. Dose-Response. 2014;1(1):1–10.Google Scholar
  82. 82.
    Shi L, Fei X, Sun G, Wang Z, Wan Y, Zeng Y et al. Hypothermia stimulates glioma stem spheres to spontaneously dedifferentiate adjacent non-stem glioma cells. Cell Mol Neurobiol. 2014:1-14.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Chandi C. Mandal
    • 1
  • Ankit Sharma
    • 1
  • Mahaveer S. Panwar
    • 2
  • James A. Radosevich
    • 3
  1. 1.Department of BiochemistryCentral University of RajasthanAjmerIndia
  2. 2.Department of StatisticsCentral University of RajasthanAjmerIndia
  3. 3.Department of Oral Medicine and Diagnostic Sciences, College of DentistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations