Tumor Biology

, Volume 37, Issue 8, pp 10793–10804 | Cite as

Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo

  • Chaoqin Duan
  • Bin Zhang
  • Chao Deng
  • Yu Cao
  • Fan Zhou
  • Longyun Wu
  • Min Chen
  • Shanshan Shen
  • Guifang Xu
  • Shu Zhang
  • Guihua Duan
  • Hongli Yan
  • Xiaoping Zou
Original Article


Recently, several studies have shown that piperlongumine (PL) can selectively kill cancer cells by targeting reactive oxygen species (ROS). However, the potential therapeutic effects and detailed mechanism of PL in gastric cancer are still not clear. In the current report, we found that PL significantly suppressed gastric cancer both in vitro and in vivo. PL obviously increased ROS generation in gastric cancer cells. Anti-oxidant glutathione (GSH) and N-acetyl-l-cysteine (NAC) can abrogate PL-induced gastric cancer cell death and proliferation inhibition. GADD45α was induced in PL-treated cancer cells and led to G2/M phase arrest, whereas genetic depletion of GADD45α by small interfering RNAs (siRNAs) could partly reverse PL-induced cell cycle arrest in gastric cancer cells. Interestingly, we also found that PL treatment decreased the expression of telomerase reverse transcriptase (TERT) gene, which plays an essential role in cancer initiation and progression. Our findings thus revealed a potential anti-tumor effect of PL on gastric cancer cells and may have therapeutic implications.


Piperlongumine Gastric cancer ROS GADD45α CHOP TERT STAT3 



Reactive oxygen species






2′,7′-Dichlorofluorescein diacetate


Poly(ADP-ribose) polymerase


Small interfering RNA


Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling


Telomerase reverse transcriptase


Compliance with ethical standards

Conflicts of interest



This study was supported by the National Natural Science Foundation of China (No. 81401974, No. 81472756, No. 81272742, and No. 81401977) and by the Natural Science Foundation from the Department of Science &Technology of Jiangsu Province (BK20140104) as well as the Outstanding Youth Project of Nanjing City (JQX14005).

Supplementary material

13277_2016_4792_MOESM1_ESM.pptx (376 kb)
ESM1 (PPTX 375 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Lin Y, Ueda J, Kikuchi S, Totsuka Y, Wei WQ, Qiao YL, et al. Comparative epidemiology of gastric cancer between Japan and China. World J Gastroenterol. 2011;17:4421–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lordick F, Allum W, Carneiro F, Mitry E, Tabernero J, Tan P, et al. Unmet needs and challenges in gastric cancer: the way forward. Cancer Treat Rev. 2014;40:692–700.CrossRefPubMedGoogle Scholar
  4. 4.
    Chatterjee A, Dutta CP. Alkaloids of Piper longum Linn. I. Structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron. 1967;23:1769–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Adam A, Torres D, et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene. 2015;34:1341–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature. 2011;475:231–4.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Roh JL, Kim EH, Park JY, Kim JW, Kwon M, Lee BH. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget. 2014;5:9227–38.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Li J, Sharkey CC, King MR. Piperlongumine and immune cytokine trail synergize to promote tumor death. Sci Rep. 2015;5:9987.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Golovine K, Makhov P, Naito S, Raiyani H, Tomaszewski J, Mehrazin R, et al. Piperlongumine and its analogs down-regulate expression of c-met in renal cell carcinoma. Cancer Biol Ther. 2015;16:743–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Makhov P, Golovine K, Teper E, Kutikov A, Mehrazin R, Corcoran A, et al. Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br J Cancer. 2014;110:899–907.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ding X, Zhang B, Pei Q, Pan J, Huang S, Yang Y, et al. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer. 2014;14:271.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen M, Huang SL, Zhang XQ, Zhang B, Zhu H, Yang VW, et al. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/MTOR/HIF-1alpha/P-gp and MRP1 signaling pathway in vitro and in vivo. J Cell Biochem. 2012;113:2474–87.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang B, Chen J, Cheng AS, Ko BC. Depletion of sirtuin 1 (SIRT1) leads to epigenetic modifications of telomerase (TERT) gene in hepatocellular carcinoma cells. Plos One. 2014;9:e84931.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang B, Yang Y, Shi X, Liao W, Chen M, Cheng AS, et al. Proton pump inhibitor pantoprazole abrogates adriamycin-resistant gastric cancer cell invasiveness via suppression of Akt/GSK-beta/beta-catenin signaling and epithelial-mesenchymal transition. Cancer Lett. 2015;356:704–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Jin S, Tong T, Fan W, Fan F, Antinore MJ, Zhu X, et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene. 2002;21:8696–704.CrossRefPubMedGoogle Scholar
  16. 16.
    Yabal M, Muller N, Adler H, Knies N, Gross CJ, Damgaard RB, et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 2014;7:1796–808.CrossRefPubMedGoogle Scholar
  17. 17.
    Paschall AV, Zimmerman MA, Torres CM, Yang D, Chen MR, Li X, et al. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer. 2014;14:24.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Moreno-Martinez D, Nomdedeu M, Lara-Castillo MC, Etxabe A, Pratcorona M, Tesi N, et al. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells. Oncotarget. 2014;5:4337–46.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–90.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Indran IR, Hande MP, Pervaiz S. hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res. 2011;71:266–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X, et al. MiR-21 modulates HTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012;18:722–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Chung SS, Aroh C, Vadgama JV. Constitutive activation of STAT3 signaling regulates HTERT and promotes stem cell-like traits in human breast cancer cells. PLoS One. 2013;8:e83971.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konnikova L, Simeone MC, Kruger MM, Kotecki M, Cochran BH. Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (HTERT) expression in human cancer and primary cells. Cancer Res. 2005;65:6516–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Shulga N, Pastorino JG. GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J Cell Sci. 2012;125:2995–3003.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jin HO, Lee YH, Park JA, Lee HN, Kim JH, Kim JY, et al. Piperlongumine induces cell death through ROS-mediated chop activation and potentiates trail-induced cell death in breast cancer cells. J Cancer Res Clin Oncol. 2014;140:2039–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen Y, Liu JM, Xiong XX, Qiu XY, Pan F, Liu D, et al. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKS-CHOP. Oncotarget. 2015;6:6406–21.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A. 1999;96:3706–11.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vairapandi M, Balliet AG, Hoffman B, Liebermann DA. GADD45b and GADD45g are cdc2/cyclinb1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol. 2002;192:327–38.CrossRefPubMedGoogle Scholar
  29. 29.
    Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med. 2012;12:634–51.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nurse P. The central role of a CDK in controlling the fission yeast cell cycle. Harvey Lect. 1996;92:55–64.PubMedGoogle Scholar
  31. 31.
    Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, et al. Association with Cdc2 and inhibition of Cdc2/cyclin B1 kinase activity by the p53-regulated protein GADD45. Oncogene. 1999;18:2892–900.CrossRefPubMedGoogle Scholar
  32. 32.
    Silke J, Meier P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 2013;5:a008730.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.CrossRefPubMedGoogle Scholar
  34. 34.
    Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6:1796–803.PubMedGoogle Scholar
  35. 35.
    Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol. 2014;545:35–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 2006;13:363–73.CrossRefPubMedGoogle Scholar
  37. 37.
    Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18:3066–77.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11:381–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Sanchez AM, Martinez-Botas J, Malagarie-Cazenave S, Olea N, Vara D, Lasuncion MA, et al. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun. 2008;372:785–91.CrossRefPubMedGoogle Scholar
  40. 40.
    Li H, Chang G, Wang J, Wang L, Jin W, Lin Y, et al. Cariporide sensitizes leukemic cells to tumor necrosis factor related apoptosis-inducing ligand by up-regulation of death receptor 5 via endoplasmic reticulum stress-CCAAT/enhancer binding protein homologous protein dependent mechanism. Leuk lymphoma. 2014;55:2135–40.CrossRefPubMedGoogle Scholar
  41. 41.
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. Chop is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ma J, Qiu Y, Yang L, Peng L, Xia Z, Hou LN, et al. Desipramine induces apoptosis in rat glioma cells via endoplasmic reticulum stress-dependent chop pathway. J Neuro-Oncol. 2011;101:41–8.CrossRefGoogle Scholar
  43. 43.
    Low KC, Tergaonkar V. Telomerase: central regulator of all of the hallmarks of cancer. Trends Biochem Sci. 2013;38:426–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Blackburn EH. The end of the (DNA) line. Nat Struct Biol. 2000;7:847–50.CrossRefPubMedGoogle Scholar
  45. 45.
    Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997;33:787–91.CrossRefPubMedGoogle Scholar
  46. 46.
    Smith LL, Coller HA, Roberts JM. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol. 2003;5:474–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Li S, Rosenberg JE, Donjacour AA, Botchkina IL, Hom YK, Cunha GR, et al. Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res. 2004;64:4833–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Mattiussi M, Tilman G, Lenglez S, Decottignies A. Human telomerase represses ROS-dependent cellular responses to tumor necrosis factor-alpha without affecting NF-kappaB activation. Cell Signal. 2012;24:708–17.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Chaoqin Duan
    • 1
  • Bin Zhang
    • 1
  • Chao Deng
    • 1
  • Yu Cao
    • 1
  • Fan Zhou
    • 1
  • Longyun Wu
    • 1
  • Min Chen
    • 1
  • Shanshan Shen
    • 1
  • Guifang Xu
    • 1
  • Shu Zhang
    • 1
  • Guihua Duan
    • 1
  • Hongli Yan
    • 2
  • Xiaoping Zou
    • 1
  1. 1.Department of Gastroenterology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
  2. 2.Department of Laboratory Medicine, Changhai HospitalThe Second Military Medical UniversityShanghaiChina

Personalised recommendations