Skip to main content
Log in

RETRACTED ARTICLE: Low p21 level is necessary for the suppressive effects of micoRNA-31 on glioma cell migration and invasion

  • Original Article
  • Published:
Tumor Biology

This article was retracted on 20 April 2017

Abstract

MicroRNAs (miRNAs), a kind of endogenous non-coding RNAs, regulate gene expression through binding to the 3′-untranslational region (UTR) of target messenger RNAs (mRNAs) and act as endogenous agents of RNA interference, resulting in either mRNA degradation or translational repression. MiR-31 has been demonstrated to be associated with the development and progression of glioma. However, the underlying molecular mechanism remains largely unclear. In the present study, we demonstrated that miR-31 only inhibited the cell migration and invasion, as well as the expression of a known miR-31 target oncogene radixin, in U251 glioma cells that expressed low level of p21; however, miR-31 showed no above effects on glioma SHG44 cells that highly expressed p21. Moreover, upregulation of p21 in U251 cells reversed the suppressive effects of miR-31 on the cell migration and invasion, suggesting that low p21 level is necessary for the miR-31-mediated inhibitory effects on glioma. Furthermore, analysis for 35 glioma specimens showed that the expression of radixin was negatively correlated with the miR-31 level in glioma tissues with low p21 expression; however, no such correlation was found in glioma tissues with high p21 level, further supporting that the low p21 level is necessary for the suppressive effect of miR-31 on the expression of its target oncogenes. In summary, our study demonstrates that the suppressive effect of miR-31 on glioma cell migration and invasion is p21-dependent, and suggests that miR-31 may be used for the treatment of patients with p21-deficent glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shahi MH, Zazpe I, Afzal M, Sinha S, Rebhun RB, Melendez B, et al. Epigenetic regulation of human hedgehog interacting protein in glioma cell lines and primary tumor samples. Tumor Biol. 2015;36:2383–91.

    Article  CAS  Google Scholar 

  2. Pulkkanen KJ, Yla-Herttuala S. Gene therapy for malignant glioma: current clinical status. Mol Ther. 2005;12:585–98.

    Article  CAS  PubMed  Google Scholar 

  3. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110:13–24.

    Article  PubMed  Google Scholar 

  4. Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002;359:1011–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu VF, Yang J, Lebrun DG, Li M. Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett. 2012;316:139–50.

    Article  CAS  PubMed  Google Scholar 

  6. Moss EG. MicroRNAs: hidden in the genome. Curr Biol. 2002;12:R138–140.

    Article  CAS  PubMed  Google Scholar 

  7. Choi E, Hwang KC. MicroRNAs as novel regulators of stem cell fate. World J Stem Cells. 2013;5:172–87.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  9. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105:13556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010;70:1906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hua D, Ding D, Han X, Zhang W, Zhao N, Foltz G, et al. Human miR-31 targets radixin and inhibits migration and invasion of glioma cells. Oncol Rep. 2012;27:700–6.

    CAS  PubMed  Google Scholar 

  13. Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52:297–303.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, et al. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012;28:77–84.

    PubMed  Google Scholar 

  15. Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck. 2012;34:219–24.

    Article  PubMed  Google Scholar 

  16. Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34:1069–75.

    CAS  PubMed  Google Scholar 

  17. Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T. Meta-analysis of microRNA expression in lung cancer. Int J Cancer. 2013;132:2884–93.

    Article  CAS  PubMed  Google Scholar 

  18. Wang S, Jiao B, Geng S, Song J, Liang Z, Lu S. Concomitant microRNA-31 downregulation and radixin upregulation predicts advanced tumor progression and unfavorable prognosis in patients with gliomas. J Neurol Sci. 2014;338:71–6.

    Article  CAS  PubMed  Google Scholar 

  19. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 2010;9:4387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010;70:1635–44.

    Article  CAS  PubMed  Google Scholar 

  22. Dong Z, Zhong Z, Yang L, Wang S, Gong Z. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett. 2014;343:249–57.

    Article  CAS  PubMed  Google Scholar 

  23. Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–9.

    Article  CAS  PubMed  Google Scholar 

  24. Gartel AL, Serfas MS, Tyner AL. p21—negative regulator of the cell cycle. Proc Soc Exp Biol Med. 1996;213:138–49.

    Article  CAS  PubMed  Google Scholar 

  25. Garner E, Raj K. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle. 2008;7:277–82.

    Article  CAS  PubMed  Google Scholar 

  26. Suhail TV, Singh P, Manna TK. Suppression of centrosome protein TACC3 induces G1 arrest and cell death through activation of p38-p53-p21 stress signaling pathway. Eur J Cell Biol. 2015;94:90–100.

    Article  CAS  PubMed  Google Scholar 

  27. Gartel AL. p21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors. 2009;35:161–4.

    Article  CAS  PubMed  Google Scholar 

  28. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ono Y, Tamiya T, Ichikawa T, Matsumoto K, Furuta K, Ohmoto T, et al. Accumulation of wild-type p53 in astrocytomas is associated with increased p21 expression. Acta Neuropathol. 1997;94:21–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ning Z, Zhu H, Li F, Liu Q, Liu G, Tan T, et al. Tumor suppression by miR-31 in esophageal carcinoma is p21-dependent. Genes Cancer. 2014;5:436–44.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhong Zhang.

Additional information

The Publisher and Editor retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation we have strong reason to believe that the peer review process was compromised.

An erratum to this article is available at http://dx.doi.org/10.1007/s13277-017-5487-6.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Lu, F., Xu, H. et al. RETRACTED ARTICLE: Low p21 level is necessary for the suppressive effects of micoRNA-31 on glioma cell migration and invasion. Tumor Biol. 37, 9663–9670 (2016). https://doi.org/10.1007/s13277-016-4788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4788-5

Keywords

Navigation