Tumor Biology

, Volume 37, Issue 7, pp 9663–9670 | Cite as

RETRACTED ARTICLE: Low p21 level is necessary for the suppressive effects of micoRNA-31 on glioma cell migration and invasion

  • Jun Pan
  • Fengfei Lu
  • Hongchao Xu
  • Qifu Wang
  • Chunnan Lin
  • Shizhong Zhang
Original Article

Abstract

MicroRNAs (miRNAs), a kind of endogenous non-coding RNAs, regulate gene expression through binding to the 3′-untranslational region (UTR) of target messenger RNAs (mRNAs) and act as endogenous agents of RNA interference, resulting in either mRNA degradation or translational repression. MiR-31 has been demonstrated to be associated with the development and progression of glioma. However, the underlying molecular mechanism remains largely unclear. In the present study, we demonstrated that miR-31 only inhibited the cell migration and invasion, as well as the expression of a known miR-31 target oncogene radixin, in U251 glioma cells that expressed low level of p21; however, miR-31 showed no above effects on glioma SHG44 cells that highly expressed p21. Moreover, upregulation of p21 in U251 cells reversed the suppressive effects of miR-31 on the cell migration and invasion, suggesting that low p21 level is necessary for the miR-31-mediated inhibitory effects on glioma. Furthermore, analysis for 35 glioma specimens showed that the expression of radixin was negatively correlated with the miR-31 level in glioma tissues with low p21 expression; however, no such correlation was found in glioma tissues with high p21 level, further supporting that the low p21 level is necessary for the suppressive effect of miR-31 on the expression of its target oncogenes. In summary, our study demonstrates that the suppressive effect of miR-31 on glioma cell migration and invasion is p21-dependent, and suggests that miR-31 may be used for the treatment of patients with p21-deficent glioma.

Keywords

Glioma MicroRNA-31 p21 Invasion Migration 

Notes

Conflicts of interest

None

References

  1. 1.
    Shahi MH, Zazpe I, Afzal M, Sinha S, Rebhun RB, Melendez B, et al. Epigenetic regulation of human hedgehog interacting protein in glioma cell lines and primary tumor samples. Tumor Biol. 2015;36:2383–91.CrossRefGoogle Scholar
  2. 2.
    Pulkkanen KJ, Yla-Herttuala S. Gene therapy for malignant glioma: current clinical status. Mol Ther. 2005;12:585–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer. 2007;110:13–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002;359:1011–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhu VF, Yang J, Lebrun DG, Li M. Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett. 2012;316:139–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Moss EG. MicroRNAs: hidden in the genome. Curr Biol. 2002;12:R138–140.CrossRefPubMedGoogle Scholar
  7. 7.
    Choi E, Hwang KC. MicroRNAs as novel regulators of stem cell fate. World J Stem Cells. 2013;5:172–87.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefPubMedGoogle Scholar
  9. 9.
    Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105:13556–61.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Creighton CJ, Fountain MD, Yu Z, Nagaraja AK, Zhu H, Khan M, et al. Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res. 2010;70:1906–15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Hua D, Ding D, Han X, Zhang W, Zhao N, Foltz G, et al. Human miR-31 targets radixin and inhibits migration and invasion of glioma cells. Oncol Rep. 2012;27:700–6.PubMedGoogle Scholar
  13. 13.
    Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52:297–303.CrossRefPubMedGoogle Scholar
  14. 14.
    Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, et al. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012;28:77–84.PubMedGoogle Scholar
  15. 15.
    Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck. 2012;34:219–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34:1069–75.PubMedGoogle Scholar
  17. 17.
    Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T. Meta-analysis of microRNA expression in lung cancer. Int J Cancer. 2013;132:2884–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang S, Jiao B, Geng S, Song J, Liang Z, Lu S. Concomitant microRNA-31 downregulation and radixin upregulation predicts advanced tumor progression and unfavorable prognosis in patients with gliomas. J Neurol Sci. 2014;338:71–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137:1032–46.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 2010;9:4387–98.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu CJ, Tsai MM, Hung PS, Kao SY, Liu TY, Wu KJ, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010;70:1635–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Dong Z, Zhong Z, Yang L, Wang S, Gong Z. MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett. 2014;343:249–57.CrossRefPubMedGoogle Scholar
  23. 23.
    Choi EJ. Hesperetin induced G1-phase cell cycle arrest in human breast cancer MCF-7 cells: involvement of CDK4 and p21. Nutr Cancer. 2007;59:115–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Gartel AL, Serfas MS, Tyner AL. p21—negative regulator of the cell cycle. Proc Soc Exp Biol Med. 1996;213:138–49.CrossRefPubMedGoogle Scholar
  25. 25.
    Garner E, Raj K. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle. 2008;7:277–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Suhail TV, Singh P, Manna TK. Suppression of centrosome protein TACC3 induces G1 arrest and cell death through activation of p38-p53-p21 stress signaling pathway. Eur J Cell Biol. 2015;94:90–100.CrossRefPubMedGoogle Scholar
  27. 27.
    Gartel AL. p21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors. 2009;35:161–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ono Y, Tamiya T, Ichikawa T, Matsumoto K, Furuta K, Ohmoto T, et al. Accumulation of wild-type p53 in astrocytomas is associated with increased p21 expression. Acta Neuropathol. 1997;94:21–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Ning Z, Zhu H, Li F, Liu Q, Liu G, Tan T, et al. Tumor suppression by miR-31 in esophageal carcinoma is p21-dependent. Genes Cancer. 2014;5:436–44.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Jun Pan
    • 1
    • 2
    • 3
  • Fengfei Lu
    • 1
    • 2
    • 3
  • Hongchao Xu
    • 1
    • 2
    • 3
  • Qifu Wang
    • 1
    • 2
    • 3
  • Chunnan Lin
    • 1
    • 2
    • 3
  • Shizhong Zhang
    • 1
    • 2
    • 3
  1. 1.The National Key Clinic SpecialtyThe Neurosurgery Institute of Guangdong ProvinceGuangdongChina
  2. 2.Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangdongChina
  3. 3.Department of Neurosurgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations