Tumor Biology

, Volume 37, Issue 7, pp 9503–9510 | Cite as

Low expression of long noncoding RNA CASC2 indicates a poor prognosis and regulates cell proliferation in non-small cell lung cancer

Original Article

Abstract

Recently, long noncoding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. The aim of this study was to evaluate the expression and biological role of lncRNA CASC2 in non-small cell lung cancer (NSCLC). By bioinformatics analysis, we found that CASC2 was significantly decreased in NSCLC. qRT-PCR was performed to investigate the expression of CASC2 in tumor tissues and corresponding non-tumor NSCLC tissues from 76 patients. The lower expression of CASC2 was remarkably correlated with advanced TNM stage and tumor size. Multivariate analyses found that CASC2 expression served as an independent predictor for overall survival of NSCLC. Moreover, overexpression of CASC2 significantly inhibited NSCLC cell proliferation both in vitro and in vivo. In conclusion, our study demonstrated that CASC2 is involved in the development and progression of NSCLC and shows that CASC2 may be a potential diagnostic and target for new therapies in patients with NSCLC.

Keywords

lncRNAs CASC2 NSCLC Cell proliferation 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81502071, 81401873, 81402554 and 81172217). Jin-song Yang was supported by the Medical Science Development Subject in Science and Technology Project of Nanjing (Grant No. ZKX13017), the Natural Science Foundation of Jiangsu province (No. BK20151086).

Compliance with ethical standards

Conflicts of interest

None.

References

  1. 1.
    Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;132:1133–45.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Goldstraw P, Crowley J, Chansky K, et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2:706–14.CrossRefPubMedGoogle Scholar
  4. 4.
    Le Moulec S, Hadoux J, Gontier E, et al. Combination of paclitaxel and bevacizumab in heavily pre-treated non-small-cell lung cancer (NSCLC) patients: a case series study on 15 patients. Bull Cancer. 2013;100:30–7.PubMedGoogle Scholar
  5. 5.
    Zarza V, Couraud S, Bosc C, Toffart AC, Moro-Sibilot D, Souquet PJ. Paclitaxel-bevacizumab is a possible alternative as salvage chemotherapy in advanced non-small cell bronchial carcinoma. Rev Mal Respir. 2014;31:601–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Lin CH, Lin MT, Kuo YW, Ho CC. Afatinib combined with cetuximab for lung adenocarcinoma with leptomeningeal carcinomatosis. Lung Cancer. 2014;85:479–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Sgambato A, Casaluce F, Maione P, Rossi A, Ciardiello F, Gridelli C. Cetuximab in advanced non-small cell lung cancer (NSCLC): the showdown? J Thorac Dis. 2014;6:578–80.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ellis PM, Coakley N, Feld R, Kuruvilla S, Ung YC. Use of the epidermal growth factor receptor inhibitors gefitinib, erlotinib, afatinib, dacomitinib, and icotinib in the treatment of non-small-cell lung cancer: a systematic review. Curr Oncol. 2015;22:e183–215.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Riely GJ, Yu HA. EGFR: the paradigm of an oncogene-driven lung cancer. Clin Cancer Res. 2015;21:2221–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9:703–19.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22:366–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Ginger MR, Shore AN, Contreras A, et al. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc Natl Acad Sci U S A. 2006;103:5781–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.CrossRefPubMedGoogle Scholar
  16. 16.
    Kong R, Zhang EB, Yin DD, et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer. 2015;14:82.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Han L, Zhang EB, Yin DD, et al. Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis. 2015;6:e1665.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang EB, Yin DD, Sun M, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5:e1243.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang EB, Kong R, Yin DD, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget. 2014;5:2276–92.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baldinu P, Cossu A, Manca A, et al. Identification of a novel candidate gene, CASC2, in a region of common allelic loss at chromosome 10q26 in human endometrial cancer. Hum Mutat. 2004;23:318–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang P, Liu YH, Yao YL, et al. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21. Cell Signal. 2015;27:275–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Nie Y, Liu X, Qu S, Song E, Zou H, Gong C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104:458–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Ono H, Motoi N, Nagano H, et al. Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer. Cancer Med. 2014;3:632–42.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liang WC, Fu WM, Wong CW, et al. The LncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget, 2015.Google Scholar
  26. 26.
    Zhang HM, Yang FQ, Chen SJ, Che J, Zheng JH. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. 2015;36:2947–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Gao Y, Meng H, Liu S, et al. LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b. Hum Mol Genet. 2015;24:841–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Prensner JR, Chen W, Han S, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia. 2014;16:900–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sun M, Liu XH, Lu KH, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Oncology, the Affiliated Jiangyin hospital, School of MedicienSoutheast UniversityWuxiPeople’s Republic of China
  3. 3.Department of Oncology, Nanjing First HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.Central laboratorythe Second Affiliated Hospital of Southeast UniversityNanjingPeople’s Republic of China
  5. 5.Department of Oncology, Xuzhou Central Hospital, Affiliated Xuzhou Hospital, College of MedicineSoutheast UniversityXuzhouPeople’s Republic of China
  6. 6.Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations