Tumor Biology

, Volume 37, Issue 7, pp 9023–9035 | Cite as

Inhibition of carbonic anhydrase potentiates bevacizumab treatment in cholangiocarcinoma

  • Kulthida Vaeteewoottacharn
  • Ryusho Kariya
  • Paweena Dana
  • Sawako Fujikawa
  • Kouki Matsuda
  • Koichi Ohkuma
  • Eriko Kudo
  • Ratthaphol Kraiklang
  • Chaisiri Wongkham
  • Sopit Wongkham
  • Seiji Okada
Original Article

Abstract

Cholangiocarcinoma (CCA) is a unique liver cancer subtype with an increasing incidence globally. The lack of specific symptoms and definite diagnostic markers results in a delayed diagnosis and disease progression. Systemic chemotherapy is commonly selected for advanced CCA even though its advantages remain unknown. Targeted therapy, especially anti-vascular endothelial growth factor (VEGF) therapy, is promising for CCA; however, improvements in the therapeutic regimen are necessary to overcome subsequent resistance. We demonstrated VEGF expression was higher in CCA cell lines than in other liver cancer cells. Secreted VEGFs played roles in the induction of peri- and intra-tumoral vascularization. VEGF neutralization by bevacizumab effectively reduced tumor growth, mainly through the suppression of angiogenesis; however, increases in the expression of hypoxia-inducible factor 1α (HIF1α) and HIF1α-responsive genes (such as VEGF, VEGFR1, VEGFR2, carbonic anhydrase (CA) IX and CAXII) indicated the potential for subsequent therapeutic resistance. Supplementation with a carbonic anhydrase inhibitor, acetazolamide, enhanced the anti-CCA effects of bevacizumab. Anti-angiogenesis and anti-proliferation were observed with the combination treatment. These results suggested a novel treatment strategy to overcome anti-angiogenesis resistance and the importance of “induced essentiality” in the treatment of CCA.

Keywords

Cholangiocarcinoma Vascular endothelial growth factor Anti-angiogenic treatment Carbonic anhydrase Hypoxia-inducible factor 1α 

Notes

Acknowledgments

We thank Mrs. I. Suzu for her technical assistance and Ms. Y. Endo for her secretarial work. This work was supported by a Grant-in-Aid for Scientific Research in Innovation Areas from the Ministry of Education, Culture, Sport Science and Technology (MEXT) of Japan (Grant No. 25460499), the Tokyo Biochemical Research Foundation, Japan (to SO and KV), the TRF Senior Research Scholar Grant to S. Wongkham (RTA5780012), and the National Research University Project of Thailand through SHeP-GMS; Khon Kaen University (to KV, NRU572012).

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248(1):84–96. doi: 10.1097/SLA.0b013e318176c4d3.CrossRefPubMedGoogle Scholar
  2. 2.
    Wongkham S, Silsirivanit A. State of serum markers for detection of cholangiocarcinoma. Asian Pac J Cancer Prev. 2012;13(Suppl):17–27.PubMedGoogle Scholar
  3. 3.
    Eckel F, Brunner T, Jelic S, Group EGW. Biliary cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol Off J Eur Soc Med Oncol / ESMO. 2010;21 Suppl 5:v65–69. doi: 10.1093/annonc/mdq167.CrossRefGoogle Scholar
  4. 4.
    Nagakawa T, Kayahara M, Ikeda S, Futakawa S, Kakita A, Kawarada H, et al. Biliary tract cancer treatment: results from the biliary tract cancer statistics registry in Japan. J Hepato-Biliary-Pancreat Surg. 2002;9(5):569–75. doi: 10.1007/s005340200076.CrossRefGoogle Scholar
  5. 5.
    Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81. doi: 10.1056/NEJMoa0908721.CrossRefPubMedGoogle Scholar
  6. 6.
    Andre T, Reyes-Vidal JM, Fartoux L, Ross P, Leslie M, Rosmorduc O, et al. Gemcitabine and oxaliplatin in advanced biliary tract carcinoma: a phase II study. Br J Cancer. 2008;99(6):862–7. doi: 10.1038/sj.bjc.6604628.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Furuse J, Okusaka T. Targeted therapy for biliary tract cancer. Cancer. 2011;3(2):2243–54. doi: 10.3390/cancers3022243.CrossRefGoogle Scholar
  8. 8.
    Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S, et al. Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 2008;98(2):418–25. doi: 10.1038/sj.bjc.6604129.CrossRefPubMedGoogle Scholar
  9. 9.
    Guedj N, Zhan Q, Perigny M, Rautou PE, Degos F, Belghiti J, et al. Comparative protein expression profiles of hilar and peripheral hepatic cholangiocarcinomas. J Hepatol. 2009;51(1):93–101. doi: 10.1016/j.jhep.2009.03.017.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu AX, Meyerhardt JA, Blaszkowsky LS, Kambadakone AR, Muzikansky A, Zheng H, et al. Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study. Lancet Oncol. 2010;11(1):48–54. doi: 10.1016/S1470-2045(09)70333-X.CrossRefPubMedGoogle Scholar
  11. 11.
    Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi: 10.1038/nrc2442.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest. 2013;123(8):3190–200. doi: 10.1172/JCI70212.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Favaro E, Lord S, Harris AL, Buffa FM. Gene expression and hypoxia in breast cancer. Genome Med. 2011;3(8):55. doi: 10.1186/gm271.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McIntyre A, Harris AL (2015) Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO molecular medicine. doi:10.15252/emmm.201404271Google Scholar
  15. 15.
    McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Turley H, et al. Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res. 2012;18(11):3100–11. doi: 10.1158/1078-0432.CCR-11-1877.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther. 2009;8(7):1867–77. doi: 10.1158/1535-7163.MCT-09-0274.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hu YL, DeLay M, Jahangiri A, Molinaro AM, Rose SD, Carbonell WS, et al. Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res. 2012;72(7):1773–83. doi: 10.1158/0008-5472.CAN-11-3831.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim YJ, Lee HJ, Kim TM, Eisinger-Mathason TS, Zhang AY, Schmidt B, et al. Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α. Int J Cancer. 2013;132(1):29–41. doi: 10.1002/ijc.27666.CrossRefPubMedGoogle Scholar
  19. 19.
    Seubwai W, Kraiklang R, Wongkham C, Wongkham S. Hypoxia enhances aggressiveness of cholangiocarcinoma cells. Asian Pac J Cancer Prev. 2012;13(Suppl):53–8.PubMedGoogle Scholar
  20. 20.
    Thongchot S, Yongvanit P, Loilome W, Seubwai W, Phunicom K, Tassaneeyakul W, et al. High expression of HIF-1α, BNIP3 and PI3KC3: hypoxia-induced autophagy predicts cholangiocarcinoma survival and metastasis. Asian Pac J Cancer Prev. 2014;15(14):5873–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Morine Y, Shimada M, Utsunomiya T, Imura S, Ikemoto T, Mori H, et al. Hypoxia inducible factor expression in intrahepatic cholangiocarcinoma. Hepato-Gastroenterology. 2011;58(110–111):1439–44. doi: 10.5754/hge11156.PubMedGoogle Scholar
  22. 22.
    Maruyama M, Kobayashi N, Westerman KA, Sakaguchi M, Allain JE, Totsugawa T, et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation. 2004;77(3):446–51. doi: 10.1097/01.TP.0000110292.73873.25.CrossRefPubMedGoogle Scholar
  23. 23.
    Sripa B, Leungwattanawanit S, Nitta T, Wongkham C, Bhudhisawasdi V, Puapairoj A, et al. Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol. 2005;11(22):3392–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Seubwai W, Vaeteewoottacharn K, Hiyoshi M, Suzu S, Puapairoj A, Wongkham C, et al. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci. 2010;101(7):1590–5. doi: 10.1111/j.1349-7006.2010.01572.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Gotoh K, Kariya R, Matsuda K, Hattori S, Vaeteewoottacharn K, Okada S. A novel EGFP-expressing nude mice with complete loss of lymphocytes and NK cells to study tumor-host interactions. Biosci Trends. 2014;8(4):202–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Goto H, Kudo E, Kariya R, Taura M, Katano H, Okada S. Targeting VEGF and interleukin-6 for controlling malignant effusion of primary effusion lymphoma. J Cancer Res Clin Oncol. 2015;141(3):465–74. doi: 10.1007/s00432-014-1842-9.CrossRefPubMedGoogle Scholar
  27. 27.
    Robinson GS, Ju M, Shih SC, Xu X, McMahon G, Caldwell RB, et al. Nonvascular role for VEGF: VEGFR-1, 2 activity is critical for neural retinal development. FASEB J. 2001;15(7):1215–7.PubMedGoogle Scholar
  28. 28.
    Taura M, Kariya R, Kudo E, Goto H, Iwawaki T, Amano M, et al. Comparative analysis of ER stress response into HIV protease inhibitors: lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway. Free Radic Biol Med. 2013;65:778–88. doi: 10.1016/j.freeradbiomed.2013.08.161.CrossRefPubMedGoogle Scholar
  29. 29.
    Taura M, Kudo E, Kariya R, Goto H, Matsuda K, Hattori S, et al. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization. J Virol. 2015;89(5):2643–58. doi: 10.1128/JVI.03105-14.CrossRefPubMedGoogle Scholar
  30. 30.
    Kariya R, Matsuda K, Gotoh K, Vaeteewoottacharn K, Hattori S, Okada S. Establishment of nude mice with complete loss of lymphocytes and NK cells and application for in vivo bio-imaging. In Vivo. 2014;28(5):779–84.PubMedGoogle Scholar
  31. 31.
    Vaeteewoottacharn K, Kariya R, Matsuda K, Taura M, Wongkham C, Wongkham S, et al. Perturbation of proteasome function by bortezomib leading to ER stress-induced apoptotic cell death in cholangiocarcinoma. J Cancer Res Clin Oncol. 2013;139(9):1551–62. doi: 10.1007/s00432-013-1473-6.CrossRefPubMedGoogle Scholar
  32. 32.
    Mokhtari RB, Kumar S, Islam SS, Yazdanpanah M, Adeli K, Cutz E, et al. Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer. 2013;13:378. doi: 10.1186/1471-2407-13-378.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chatterjee S, Heukamp LC, Siobal M, Schottle J, Wieczorek C, Peifer M, et al. Tumor VEGF: VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013;123(4):1732–40. doi: 10.1172/JCI65385.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol. 2008;24(3):349–56. doi: 10.1097/MOG.0b013e3282fbf9b3.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Khan SA, Davidson BR, Goldin RD, Heaton N, Karani J, Pereira SP, Rosenberg WM, Tait P, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Wasan H, British Society of G. Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut. 2012;61(12):1657–69. doi: 10.1136/gutjnl-2011-301748.CrossRefGoogle Scholar
  36. 36.
    von Marschall Z, Cramer T, Hocker M, Finkenzeller G, Wiedenmann B, Rosewicz S. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut. 2001;48(1):87–96.CrossRefGoogle Scholar
  37. 37.
    McKay SC, Unger K, Pericleous S, Stamp G, Thomas G, Hutchins RR, et al. Array comparative genomic hybridization identifies novel potential therapeutic targets in cholangiocarcinoma. HPB Off J Int Hepato Pancreato Biliary Assoc. 2011;13(5):309–19. doi: 10.1111/j.1477-2574.2010.00286.x.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Kulthida Vaeteewoottacharn
    • 1
    • 2
    • 3
  • Ryusho Kariya
    • 1
  • Paweena Dana
    • 2
    • 3
  • Sawako Fujikawa
    • 1
  • Kouki Matsuda
    • 1
  • Koichi Ohkuma
    • 1
  • Eriko Kudo
    • 1
  • Ratthaphol Kraiklang
    • 3
    • 4
  • Chaisiri Wongkham
    • 2
    • 3
  • Sopit Wongkham
    • 2
    • 3
  • Seiji Okada
    • 1
  1. 1.Division of Hematopoiesis, Center for AIDS ResearchKumamoto UniversityKumamotoJapan
  2. 2.Department of BiochemistryKhon Kaen UniversityKhon KaenThailand
  3. 3.Liver Fluke and Cholangiocarcinoma Research Center, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  4. 4.Department of Nutrition, Faculty of Public HeathKhon Kaen UniversityKhon KaenThailand

Personalised recommendations