Tumor Biology

, Volume 37, Issue 3, pp 2823–2831 | Cite as

E2F1: a promising regulator in ovarian carcinoma

  • Lei Zhan
  • Yu Zhang
  • Wenyan Wang
  • Enxue Song
  • Yijun Fan
  • Bing Wei


E2F is a family of transcription factors that recognized to regulate the expression of genes essential for a wide range of cellular functions, including cell cycle progression, DNA repair, DNA replication, differentiation, proliferation, and apoptosis. E2F1, the most classic member of the E2F family, exhibits a complex role in tumor development regulation. In recent years, a growing body of data suggested an intimate relationship between E2F1 and ovarian carcinoma. And E2F1 was well identified to play dual functions and serve as a useful prognostic indicator in ovarian carcinoma. However, the mechanism underlying E2F1 associated with ovarian carcinoma remains elusive. It is necessary to clarify the fundamental role of E2F1 in ovarian carcinoma. In this review, we tried to sum up the knowledge of E2F1, including its structure and related mechanism. We also attempt to absorb the research achievements and collect the mechanism of E2F1 in ovarian carcinoma.


E2F1 Ovarian carcinoma Regulator Cellular functions Overlapping 



Ras homologue member I




Cyclin-dependent kinases


DNA-binding domain


Dimerization partner


Epithelial ovarian cancer


Estrogen receptor


Germ cell tumors


Human peritoneal mesothelial cell


Invasiveness gene signatures


Retinoblastoma protein


Histone deacetylase


Leuzine zipper


Marked box




Nuclear localization signals


Non-steroidal anti-inflammatory


Ovarian cancer stem cells


Phosphatase and tensin homologue


Serous borderline tumors


Ovarian serous carcinomas


High-grade SCAs




Compliance with ethical standard

Conflicts of interest



  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Kang KW, Lee MJ, Song JA, Jeong JY, Kim YK, Lee C, et al. Overexpression of goosecoid homeobox is associated with chemoresistance and poor prognosis in ovarian carcinoma. Oncol Rep. 2014;32:189–98.PubMedGoogle Scholar
  3. 3.
    McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334:1–6.CrossRefPubMedGoogle Scholar
  4. 4.
    De Meyer T, Bijsmans IT, Van de Vijver KK, Bekaert S, Oosting J, Van Criekinge W, et al. E2Fs mediate a fundamental cell-cycle deregulation in high-grade serous ovarian carcinomas. J Pathol. 2009;217:14–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Hallstrom TC, Mori S, Nevins JR. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell. 2008;13:11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Miu CG, et al. Promising roles of mammalian E2Fs in hepatocellular carcinoma. Cell Signal. 2014;26:1075–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9:785–97.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    DeGregori J. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta. 2002;1602:131–50.PubMedGoogle Scholar
  9. 9.
    DeGregori J, Johnson DG. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr Mol Med. 2006;6:739–48.PubMedGoogle Scholar
  10. 10.
    Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N. The role of the E2F transcription factor family in UV-induced apoptosis. Int J Mol Sci. 2011;12:8947–60.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: specific functions and overlapping interests. EMBO J. 2004;23:4709–16.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gaubatz S, Wood JG, Livingston DM. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc Natl Acad Sci U S A. 1998;95:9190–5.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Logan N, Graham A, Zhao X, Fisher R, Maiti B, Leone G, et al. E2F-8: an E2F family member with a similar organization of DNA-binding domains to E2F-7. Oncogene. 2005;24:5000–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Biswas AK, Johnson DG. Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res. 2012;72:13–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8:671–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Mulligan G, Jacks T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet. 1998;14:223–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. Biochim Biophys Acta. 2010;1799:788–94.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98:859–69.CrossRefPubMedGoogle Scholar
  19. 19.
    Reimer D, Sadr S, Wiedemair A, Goebel G, Concin N, Hofstetter G, et al. Expression of the E2F family of transcription factors and its clinical relevance in ovarian cancer. Ann N Y Acad Sci. 2006;1091:270–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu T, Hou L, Huang Y. EZH2-specific microRNA-98 inhibits human ovarian cancer stem cell proliferation via regulating the pRb-E2F pathway. Tumour Biol. 2014;35:7239–47.CrossRefPubMedGoogle Scholar
  21. 21.
    Sun Y, Mu F, Li C, Wang W, Luo M, Fu Y, et al. Aspidin BB, a phloroglucinol derivative, induces cell cycle arrest and apoptosis in human ovarian HO-8910 cells. Chem Biol Interact. 2013;204:88–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Yee AS, Reichel R, Kovesdi I, Nevins JR. Promoter interaction of the E1A-inducible factor E2F and its potential role in the formation of a multi-component complex. EMBO J. 1987;6:2061–8.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 2002;3:11–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Stevens C, La Thangue NB. E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys. 2003;412:157–69.CrossRefPubMedGoogle Scholar
  25. 25.
    Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer. 2001;1:222–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Nakajima T, Yasui K, Zen K, Inagaki Y, Fujii H, Minami M, et al. Activation of B-Myb by E2F1 in hepatocellular carcinoma. Hepatol Res. 2008;38:886–95.PubMedGoogle Scholar
  27. 27.
    Ladu S, Calvisi DF, Conner EA, Farina M, Factor VM, Thorgeirsson SS. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology. 2008;135:1322–32.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yan LH, Li L, Xie YB, Xiao Q, Wang CQ. Effects of E2F-1 overexpression on apoptosis of gastric cancer cells and expressions of apoptosis-related genes. Ai Zheng. 2009;28:1176–80.PubMedGoogle Scholar
  29. 29.
    Sun HX, Xu Y, Yang XR, Wang WM, Bai H, Shi RY, et al. Hypoxia inducible factor 2 alpha inhibits hepatocellular carcinoma growth through the transcription factor dimerization partner 3/E2F transcription factor 1-dependent apoptotic pathway. Hepatology. 2013;57:1088–97.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen YL, Uen YH, Li CF, Horng KC, Chen LR, Wu WR, et al. The E2F transcription factor 1 transactives stathmin 1 in hepatocellular carcinoma. Ann Surg Oncol. 2013;20:4041–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Iaquinta PJ, Lees JA. Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol. 2007;19:649–57.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Timmers C, Sharma N, Opavsky R, Maiti B, Wu L, Wu J, et al. E2f1, E2f2, and E2f3 control E2F target expression and cellular proliferation via a p53-dependent negative feedback loop. Mol Cell Biol. 2007;27:65–78.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol. 2003;5:552–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 2000;407:645–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Moroni MC, Hickman ES, Lazzerini Denchi E, Caprara G, Colli E, Cecconi F, et al. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol. 2001;3:552–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S, et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol. 2004;24:2968–77.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Scambia G, Lovergine S, Masciullo V. RB family members as predictive and prognostic factors in human cancer. Oncogene. 2006;25:5302–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell. 1998;2:293–304.CrossRefPubMedGoogle Scholar
  39. 39.
    Korotayev K, Chaussepied M, Ginsberg D. ERK activation is regulated by E2F1 and is essential for E2F1-induced S phase entry. Cell Signal. 2008;20:1221–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Knoll S, Emmrich S, Putzer BM. The E2F1-miRNA cancer progression network. Adv Exp Med Biol. 2013;774:135–47.CrossRefPubMedGoogle Scholar
  41. 41.
    Diaz R, Silva J, Garcia JM, Lorenzo Y, Garcia V, Pena C, et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer. 2008;47:794–802.CrossRefPubMedGoogle Scholar
  42. 42.
    Matsumura I, Tanaka H, Kanakura Y. E2F1 and c-Myc in cell growth and death. Cell Cycle. 2003;2:333–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C, et al. MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med (Berl). 2011;89:1037–50.CrossRefGoogle Scholar
  44. 44.
    Reimer D, Sadr S, Wiedemair A, Concin N, Hofstetter G, Marth C, et al. Heterogeneous cross-talk of E2F family members is crucially involved in growth modulatory effects of interferon-gamma and EGF. Cancer Biol Ther. 2006;5:771–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Paulson QX, McArthur MJ, Johnson DG. E2F3a stimulates proliferation, p53-independent apoptosis and carcinogenesis in a transgenic mouse model. Cell Cycle. 2006;5:184–90.CrossRefPubMedGoogle Scholar
  46. 46.
    Lyons TE, Salih M, Tuana BS. Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. Am J Physiol Cell Physiol. 2006;290:C189–99.CrossRefPubMedGoogle Scholar
  47. 47.
    Montenegro MF, Sanchez-del-Campo L, Fernandez-Perez MP, Saez-Ayala M, Cabezas-Herrera J, Rodriguez-Lopez JN. Targeting the epigenetic machinery of cancer cells. Oncogene. 2015;34:135–43.CrossRefPubMedGoogle Scholar
  48. 48.
    Suh DS, Yoon MS, Choi KU, Kim JY. Significance of E2F-1 overexpression in epithelial ovarian cancer. Int J Gynecol Cancer. 2008;18:492–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Valle BL, D’Souza T, Becker KG, Wood 3rd WH, Zhang Y, Wersto RP, et al. Non-steroidal anti-inflammatory drugs decrease E2F1 expression and inhibit cell growth in ovarian cancer cells. PLoS One. 2013;8, e61836.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Xu D, Lin TH, Yeh CR, Cheng MA, Chen LM, Chang C, et al. The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth. Biomed Res Int. 2014;2014:713263.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H, et al. Transdominant deltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res. 2004;64:2449–60.CrossRefPubMedGoogle Scholar
  52. 52.
    Andreu-Vieyra C, Chen R, Matzuk MM. Conditional deletion of the retinoblastoma (Rb) gene in ovarian granulosa cells leads to premature ovarian failure. Mol Endocrinol. 2008;22:2141–61.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mayer F, Mueller S, Malenke E, Kuczyk M, Hartmann JT, Bokemeyer C. Induction of apoptosis by flavopiridol unrelated to cell cycle arrest in germ cell tumour derived cell lines. Invest New Drugs. 2005;23:205–11.CrossRefPubMedGoogle Scholar
  54. 54.
    Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med. 1997;336:1401–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang A, Schneider-Broussard R, Kumar AP, MacLeod MC, Johnson DG. Regulation of BRCA1 expression by the Rb-E2F pathway. J Biol Chem. 2000;275:4532–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Lu Z, Luo RZ, Peng H, Rosen DG, Atkinson EN, Warneke C, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res. 2006;12:2404–13.CrossRefPubMedGoogle Scholar
  57. 57.
    Reimer D, Sadr S, Wiedemair A, Stadlmann S, Concin N, Hofstetter G, et al. Clinical relevance of E2F family members in ovarian cancer—an evaluation in a training set of 77 patients. Clin Cancer Res. 2007;13:144–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Trinh XB, Tjalma WA, Dirix LY, Vermeulen PB, Peeters DJ, Bachvarov D, et al. Microarray-based oncogenic pathway profiling in advanced serous papillary ovarian carcinoma. PLoS One. 2011;6, e22469.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Feldstein O, Ben-Hamo R, Bashari D, Efroni S, Ginsberg D. RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation. Mol Cancer Res. 2012;10:1169–77.CrossRefPubMedGoogle Scholar
  60. 60.
    Engelmann D, Putzer BM. Translating DNA damage into cancer cell death-A roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance. Drug Resist Updat. 2010;13:119–31.CrossRefPubMedGoogle Scholar
  61. 61.
    Kaelin Jr WG. E2F1 as a target: promoter-driven suicide and small molecule modulators. Cancer Biol Ther. 2003;2:S48–54.CrossRefPubMedGoogle Scholar
  62. 62.
    Lee J, Park CK, Park JO, Lim T, Park YS, Lim HY, et al. Impact of E2F-1 expression on clinical outcome of gastric adenocarcinoma patients with adjuvant chemoradiation therapy. Clin Cancer Res. 2008;14:82–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Zhai JM, Yin XY, Lai YR, Hou X, Cai JP, Hao XY, et al. Sorafenib enhances the chemotherapeutic efficacy of S-1 against hepatocellular carcinoma through downregulation of transcription factor E2F-1. Cancer Chemother Pharmacol. 2013;71:1255–64.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Lei Zhan
    • 1
  • Yu Zhang
    • 1
  • Wenyan Wang
    • 1
  • Enxue Song
    • 1
  • Yijun Fan
    • 1
  • Bing Wei
    • 1
  1. 1.Department of Gynecology and ObstetricsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina

Personalised recommendations