Tumor Biology

, Volume 37, Issue 7, pp 9233–9241 | Cite as

Macrophages and endothelial cells orchestrate tumor-associated angiogenesis in oral cancer via hedgehog pathway activation

  • Ludmila de Faro Valverde
  • Thiago de Almeida Pereira
  • Rosane Borges Dias
  • Vanessa Sousa Nazaré Guimarães
  • Eduardo Antônio Gonçalves Ramos
  • Jean Nunes Santos
  • Clarissa Araújo Gurgel Rocha
Original Article

Abstract

The present study aimed to evaluate the role of Hedgehog (Hh) molecule expression in association with the clinical aspects of oral squamous cell carcinoma (OSCC), as well as angiogenesis and CD163+ macrophages. Twenty-eight cases of OSCC, nine cases of tumor-free resection margins (TM), and four cases of non-neoplastic oral mucosa (NNM) were submitted to immunohistochemistry to detect proteins Sonic Hedgehog (SHH), Indian Hedgehog (IHH), GLI1, CD163, and CD105. Protein colocalization with respect to SHH/CD163, IHH/CD163, GLI1/CD163, and GLI1/CD105 was assessed by immunohistochemical double staining. In tumor parenchyma, SHH and IHH were present in the cytoplasm of neoplastic cells, while GLI1 was observed in cytoplasm and nucleus. Endothelial cells were found to express SHH, IHH, and GLI1 within CD105+ vessels, and a positive correlation between infiltrating macrophage density (IMD) and microvascular density (MVD) was observed in cases of OSCC and TM. When compared to TM and NNM, the OSCC cases demonstrated higher immunoreactivity for SHH (p = 0.01), IHH (p = 0.39), GLI1 (p = 0.03), IMD (p = 0.0002), and MVD (p = 0.0002). Our results suggest the participation of the Hh pathway in OSCC by way of autocrine and paracrine signaling, in addition to the participation of both SHH and IHH ligands. Endothelial cells were also found to exhibit positivity with respect to Hh pathway components and we surmise that these molecules may play a role in tumor angiogenesis. CD163+ macrophages were also observed to express IHH, a ligand of this pathway, in addition to being associated with tumor neovascularization.

Keywords

Oral cancer Squamous cell carcinoma Hedgehog proteins Immunohistochemistry 

Notes

Acknowledgments

This study was supported by grants from Foundation for Search of Bahia State—FAPESB, Bahia, Brazil (007/2013), and National Council for Scientific and Technological Development, CNPq, Brazil (446065/2014-5). The authors would like to thank Andris K. Walter for providing English translation and consulting services.

Compliance with ethical standards

Conflicts of interest

None

Ethics approval and consent to participate

The present research proposal received approval from our host institution’s review board. Informed consent was obtained from all individual participants included in the study.

Supplementary material

13277_2015_4763_Fig7_ESM.jpg (163 kb)
Supplemental Fig. 1

(a) CD163 immunoreactivity (Permanent Red) evident in the membrane and cytoplasm in OSCC cases. (b) IHH immunoreactivity (Vina Green) in the membrane and cytoplasm in OSCC cases. (JPG 163 kb)

13277_2015_4763_MOESM1_ESM.tif (8.1 mb)
High resolution image (TIF 8319 kb)
13277_2015_4763_MOESM2_ESM.doc (78 kb)
Supplemental Table 1 (DOC 78 kb)
13277_2015_4763_MOESM3_ESM.doc (40 kb)
Supplemental Table 2 (DOC 40 kb)

References

  1. 1.
    Bhargava A, Saigal S, Chalishazar M. Histopathological grading systems in oral squamous cell carcinoma: a review. J Int Oral Health. 2010;2:1–10.Google Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Adrien J, Bertolus C, Gambotti L, Mallet A, Baujat B. Why are head and neck squamous cell carcinoma diagnosed so late? Influence of health care disparitiesand socio-economic factors. Oral Oncol. 2014;50:90–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Rodrigues PC, Miguel MC, Bagordakis E, Fonseca FP, de Aquino SN, Santos-Silva AR, et al. Clinicopathological prognostic factors of oral tongue squamous cell carcinoma: a retrospective study of 202 cases. Int J Oral Maxillofac Surg. 2014;43:795–801.CrossRefPubMedGoogle Scholar
  5. 5.
    Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 2003;425:851–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chari NS, McDonnell TJ. The sonic hedgehog signaling network in development and neoplasia. Adv Anat Pathol. 2007;14:344–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Hwang J, Kang MH, Yoo YA, Quan YH, Kim HK, Oh SC, et al. The effects of sonic hedgehog signaling pathway components on non-small-cell lung cancer progression and clinical outcome. World J Surg Oncol. 2014;12:268.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cavicchioli Buim ME, Gurgel CAS, Gonçalves Ramos EA, Lourenço SV, Soares FA. Activation of sonic hedgehog signaling in oral squamous cell carcinomas: a preliminary study. Hum Pathol. 2011;42:1484–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Honami T, Shimo T, Okui T, Kurio N, Hassan NM, Iwamoto M, et al. Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction. Oral Oncol. 2012;48:49–55.CrossRefPubMedGoogle Scholar
  11. 11.
    Leovic D, Sabol M, Ozretic P, Musani V, Car D, Marjanovic K, et al. Hh-Gli signaling pathway activity in oral and oropharyngeal squamous cell carcinoma. Head Neck. 2012;34:104–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Hassounah NB, Bunch TA, McDermott KM. Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin Cancer Res. 2012;18:2429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet. 2004;36:277–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Dunaeva M, Voo S, van Oosterhoud C, Waltenberguer J. Sonic hedgehog is a potente chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis. Basic Res Cardiol. 2010;105:61–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Pereira TA, Xie G, Choi SS, Syn WK, Voieta I, Lu J, et al. Macrophage-derived Hedgehog ligands promotes fibrogenic and angiogenic responses in human schistosomiasis mansoni. Liver Int. 2013;33(1):149–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Pinter M, Sieghart W, Schmid M, Dauser B, Prager G, Dienes HP, et al. Hedgehog inhibition reduces angiogenesis by downregulation of tumoral VEGF-A expression in hepatocellular carcinoma. United European Gastroenterol J. 2013;1:265–75.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mathew E, Zhang Y, Holtz AM, Kane KT, Song JY, Allen BL, et al. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by hedgehog signaling. Cell Rep. 2014;9:484–94.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Olsen CL, Hsu PP, Glienke J, Rubanyi GM, Brooks AR. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer. 2004;4:43.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vokes SA, Yatskievych TA, Heimark RL, McMahon J, McMahon AP, Antin PB, et al. Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development. 2004;131:4371–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Marioni G, D’Alessandro E, Giacomelli L, Staffieri A. CD105 is a marker of tumour vasculature and a potential target for the treatment of head and neck squamous cell carcinoma. J Oral Pathol Med. 2010;39:361–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today. 2012;42:1–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Obeid E, Nanda R, Fu YX, Olopade OI. The role of tumor-associated macrophages in breast cancer progression (review). Int J Oncol. 2013;43:5–12.PubMedPubMedCentralGoogle Scholar
  23. 23.
    He KF, Zhang L, Huang CF, Ma SR, Wang YF, Wang WM, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int. 2014;2014:838632.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pedersen MB, Danielsen AV, Hamilton-Dutoit SJ, Bendix K, Nørgaard P, Møller MB, et al. High intratumoral macrophage content is an adverse prognostic feature in anaplastic large cell lymphoma. Histopathology. 2014;65:490–500.CrossRefPubMedGoogle Scholar
  25. 25.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.CrossRefPubMedGoogle Scholar
  27. 27.
    Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY. The role of tumor-associated macrophages in tumor vascularization. Vasc Cell. 2013;5:20.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang X, Zhao X, Wang K, Wu L, Duan T. Interaction of monocytes/macrophages with ovarian cancer cells promotes angiogenesis in vitro. Cancer Sci. 2013;104:516–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Gurgel CA, Ramos EA, Azevedo RA, Sarmento VA, da Silva Carvalho AM, dos Santos JN. Expression of Ki-67, p53 and p63 proteins in keratocyst odontogenic tumours: an immunohistochemical study. J Mol Histol. 2008;39:311–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Dias RB, Valverde LF, Sales CBS, Guimarães VS, Cabral MG, de Aquino Xavier FC, et al. Enhanced expression of hedgehog pathway proteins in oral epithelial dysplasia. Appl Immunohistochem Mol Morphol. 2015.Google Scholar
  31. 31.
    Cohen DJ. Targeting the hedgehog pathway: role in cancer and clinical implications of its inhibition. Hematol Oncol Clin North Am. 2012;26:565–88.CrossRefPubMedGoogle Scholar
  32. 32.
    McMillan R, Matsui W. Molecular pathways: the hedgehog signaling pathway in cancer. Clin Cancer Res. 2012;18:4883–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19:1410–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Chan IS, Guy CD, Chen Y, Lu J, Swiderska-Syn M, Michelotti GA, et al. Paracrine Hedgehog signaling drives metabolic changes in hepatocellular carcinoma. Cancer Res. 2012;72:6344–50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sahebjam S, Siu LL, Razak AA. The utility of hedgehog signaling pathway inhibition for cancer. Oncologist. 2012;17:1090–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    O’Toole AS, Machalek DA, Shearer RF, Millar EK, Nair R, Schofield P, et al. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res. 2011;71:4002–14.CrossRefPubMedGoogle Scholar
  37. 37.
    Pereira TA, Witek RP, Syn WK, Choi SS, Bradrick S, Karaca GF, et al. Viral factors induce Hedgehog pathway activation in humans with viral hepatitis, cirrhosis, and hepatocellular carcinoma. Lab Investig. 2010;90:1690–703.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network. Sci Signal. 2012;5(246):re6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sheng T, Chi S, Zhang X, Xie J. Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem. 2006;281:9–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol. 2014;7:85.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Harris LG, Pannell LK, Singh S, Samant RS, Shevde LA. Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene. 2012;31:3370–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Mori K, Hiroi M, Shimada J, Ohmori Y. Infiltration of m2 tumor-associated macrophages in oral squamous cell carcinoma correlates with tumor malignancy. Cancers (Basel). 2011;3:3726–39.CrossRefGoogle Scholar
  43. 43.
    Fujii N, Shomori K, Shiomi T, Nakabayashi M, Takeda C, Ryoke K, et al. Cancer-associated fibroblasts and CD163-positive macrophages in oral squamous cell carcinoma: their clinicopathological and prognostic significance. J Oral Pathol Med. 2012;41:444–51.CrossRefPubMedGoogle Scholar
  44. 44.
    França CM, Batista AC, Borra RC, Ventiades-Flores JA, Mendonça EF, Deana AM, et al. Macrophage migration inhibitory factor and oral cancer. J Oral Pathol Med. 2013;42:368–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Costa NL, Valadares MC, Souza PP, Mendonça EF, Oliveira JC, Silva TA, et al. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol. 2013;49:216–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Wang S, Sun M, Gu C, Wang X, Chen D, Zhao E, et al. Expression of CD163, interleukin-10, and interferon-gamma in oral squamous cell carcinoma: mutual relationships and prognostic implications. Eur J Oral Sci. 2014;122:202–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen W, Tang T, Eastham-Anderson J, Dunlap D, Alicke B, Nannini M, et al. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells. Proc Natl Acad Sci U S A. 2011;108:9589–94.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schumacher MA, Donnelly JM, Engevik AC, Xiao C, Yang L, Kenny S, et al. Gastric Sonic Hedgehog acts as a macrophage chemoattractant during the immune response to Helicobacter pylori. Gastroenterology. 2012;142:1150–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jurisic V, Terzic T, Colic S, Jurisic M. The concentration of TNF-alpha correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral Dis. 2008;14(7):600–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Heller E, Hurchla MA, Xiang J, Su X, Chen S, Schneider J, et al. Hedgehog signaling inhibition blocks growth of resistant tumors through effects on tumor microenvironment. Cancer Res. 2012;72:897–907.CrossRefPubMedGoogle Scholar
  52. 52.
    Merry R, Belfield L, McArdle P, McLennan A, Crean S, Foey A. Oral health and pathology: a macrophage account. Br J Oral Maxillofac Surg. 2012;50:2–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Ludmila de Faro Valverde
    • 1
  • Thiago de Almeida Pereira
    • 2
  • Rosane Borges Dias
    • 1
  • Vanessa Sousa Nazaré Guimarães
    • 1
  • Eduardo Antônio Gonçalves Ramos
    • 1
  • Jean Nunes Santos
    • 3
  • Clarissa Araújo Gurgel Rocha
    • 1
    • 3
  1. 1.Laboratory of Pathology and Molecular Biology, Oswaldo Cruz FoundationGonçalo Moniz Research CenterSalvadorBrazil
  2. 2.Laboratory of Experimental PathologyOswaldo Cruz FoundationSalvadorBrazil
  3. 3.Laboratory of Oral Surgical PathologySchool of Dentistry of the Federal University of BahiaSalvadorBrazil

Personalised recommendations