Tumor Biology

, Volume 37, Issue 7, pp 8811–8824 | Cite as

Upregulation of CD44v6 contributes to acquired chemoresistance via the modulation of autophagy in colon cancer SW480 cells

  • Lin Lv
  • Hai-Guang Liu
  • Si-Yang Dong
  • Fan Yang
  • Qing-Xuan Wang
  • Gui-Long Guo
  • Yi-Fei Pan
  • Xiao-Hua Zhang
Original Article


The CD44 isoform containing variant exon v6 (CD44v6) plays an important role in the progression, metastasis, and prognosis of colorectal cancer (CRC). Recently, it was found that CD44v6 is involved in acquired drug resistance. This study aimed to investigate the molecular mechanism of CD44v6 in the resistance of CRC cells to chemotherapy. A stable CD44v6 overexpression model in SW480 cells was established via lentiviral transduction. The chemosensitivity of cells to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) was determined by cell counting kit (CCK)-8, lactate dehydrogenase (LDH) release, and colony formation assays. Immunohistochemical staining of CD44v6 was performed in human CRC tissues. The key components in cell apoptosis, drug efflux and metabolism, mismatch repair, autophagy, epithelial–mesenchymal transition (EMT), and the PI3K–Akt and MAPK–Ras–Erk1/2 pathways were assessed using flow cytometry, quantitative real-time polymerase chain reaction (PCR), and western blot assays. The CD44v6 overexpression cells showed a higher viability, a lower LDH release rate, and an increased clonogenicity than the control cells under drug treatment. Moreover, overexpression of CD44v6 resulted in enhanced autophagy flux, EMT, and phosphorylation of Akt and Erk in the presence of drugs. Furthermore, high CD44v6 expression in the primary tumor was closely associated with an early recurrence in CRC patients who underwent curative surgery and adjuvant chemotherapy. In conclusion, overexpression of CD44v6 contributes to chemoresistance in SW480 cells under cytotoxic stress via the modulation of autophagy, EMT, and activation of the PI3K–Akt and MAPK–Ras–Erk pathways.


CD44v6 Colorectal cancer Chemoresistance Autophagy 



This work was supported by the Science Foundation from the Health Bureau of Wenzhou City of Zhejiang, China (Y20140713) and by the Incubation Program from The First Affiliated Hospital of Wenzhou Medical University (FHY2014013).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, et al. Colorectal cancer. Lancet. 2010;375(9719):1030–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26. doi: 10.1038/nrc3599.CrossRefPubMedGoogle Scholar
  3. 3.
    Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92. doi: 10.1002/path.1706.CrossRefPubMedGoogle Scholar
  4. 4.
    De Mattia E, Cecchin E, Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: toward targeted personalized therapy. Drug Resist Updat. 2015;20:39–70. doi: 10.1016/j.drup.2015.05.003.CrossRefPubMedGoogle Scholar
  5. 5.
    Perez-Tomas R. Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem. 2006;13(16):1859–76. doi: 10.2174/092986706777585077.CrossRefPubMedGoogle Scholar
  6. 6.
    Glavinas H, Krajcsi P, Cserepes J, Sarkadi B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv. 2004;1(1):27–42. doi: 10.2174/1567201043480036.CrossRefPubMedGoogle Scholar
  7. 7.
    Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369–75. doi: 10.1038/sj.onc.1206940.CrossRefPubMedGoogle Scholar
  8. 8.
    Giles GI, Sharma RP. Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. Med Chem. 2005;1(4):383–94.CrossRefPubMedGoogle Scholar
  9. 9.
    Kirschner K, Melton DW. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res. 2010;30(9):3223–32.PubMedGoogle Scholar
  10. 10.
    Lage H, Dietel M. Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J Cancer Res Clin Oncol. 1999;125(3–4):156–65.CrossRefPubMedGoogle Scholar
  11. 11.
    Rodriguez-Nieto S, Zhivotovsky B. Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr Pharm Des. 2006;12(34):4411–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Lai K, Killingsworth MC, Lee CS. The significance of autophagy in colorectal cancer pathogenesis and implications for therapy. J Clin Pathol. 2014;67(10):854–8. doi: 10.1136/jclinpath-2014-202529.CrossRefPubMedGoogle Scholar
  13. 13.
    McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 2011;226(11):2762–81. doi: 10.1002/jcp.22647.CrossRefPubMedGoogle Scholar
  14. 14.
    Sui H, Zhu L, Deng WL, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat. 2014;37(10):584–9. doi: 10.1159/000367802.CrossRefPubMedGoogle Scholar
  15. 15.
    Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45. doi: 10.1038/nrm1004.CrossRefPubMedGoogle Scholar
  16. 16.
    Coppola D, Hyacinthe M, Fu L, Cantor AB, Karl R, Marcet J, et al. CD44V6 expression in human colorectal carcinoma. Hum Pathol. 1998;29(6):627–35.CrossRefPubMedGoogle Scholar
  17. 17.
    Zlobec I, Gunthert U, Tornillo L, Iezzi G, Baumhoer D, Terracciano L, et al. Systematic assessment of the prognostic impact of membranous CD44v6 protein expression in colorectal cancer. Histopathology. 2009;55(5):564–75. doi: 10.1111/j.1365-2559.2009.03421.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14(3):342–56. doi: 10.1016/j.stem.2014.01.009.CrossRefPubMedGoogle Scholar
  19. 19.
    Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, et al. Cell miner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 2012;72(14):3499–511. doi: 10.1158/0008-5472.CAN-12-1370.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Larionov A, Krause A, Miller W. A standard curve based method for relative real time PCR data processing. BMC Bioinformatics. 2005;6:62. doi: 10.1186/1471-2105-6-62.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yanamoto S, Yamada S, Takahashi H, Naruse T, Matsushita Y, Ikeda H, et al. Expression of the cancer stem cell markers CD44v6 and ABCG2 in tongue cancer: effect of neoadjuvant chemotherapy on local recurrence. Int J Oncol. 2014;44(4):1153–62. doi: 10.3892/ijo.2014.2289.PubMedGoogle Scholar
  23. 23.
    Costa S, Terzano P, Bovicelli A, Martoni A, Angelelli B, Santini D, et al. CD44 isoform 6 (CD44v6) is a prognostic indicator of the response to neoadjuvant chemotherapy in cervical carcinoma. Gynecol Oncol. 2001;80(1):67–73. doi: 10.1006/gyno.2000.6016.CrossRefPubMedGoogle Scholar
  24. 24.
    Bendardaf R, Lamlum H, Ristamaki R, Pyrhonen S. CD44 variant 6 expression predicts response to treatment in advanced colorectal cancer. Oncol Rep. 2004;11(1):41–5.PubMedGoogle Scholar
  25. 25.
    Niu RF, Zhang J, Huang JY. Expression of CD44v6 before and after chemotherapy in patients with breast cancer and its significance. Ai Zheng. 2002;21(1):71–4.PubMedGoogle Scholar
  26. 26.
    Recio JA, Merlino G. Hepatocyte growth factor/scatter factor induces feedback up-regulation of CD44v6 in melanoma cells through Egr-1. Cancer Res. 2003;63(7):1576–82.PubMedGoogle Scholar
  27. 27.
    Gao C, Guo H, Downey L, Marroquin C, Wei J, Kuo PC. Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis. 2003;24(12):1871–8. doi: 10.1093/carcin/bgg139.CrossRefPubMedGoogle Scholar
  28. 28.
    Li J, Zha XM, Wang R, Li XD, Xu B, Xu YJ, et al. Regulation of CD44 expression by tumor necrosis factor-alpha and its potential role in breast cancer cell migration. Biomed Pharmacother. 2012;66(2):144–50. doi: 10.1016/j.biopha.2011.11.021.CrossRefPubMedGoogle Scholar
  29. 29.
    Quinones A, Dobberstein KU, Rainov NG. The egr-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells. Life Sci. 2003;72(26):2975–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Damm S, Koefinger P, Stefan M, Wels C, Mehes G, Richtig E, et al. HGF-promoted motility in primary human melanocytes depends on CD44v6 regulated via NF-kappa B, Egr-1, and C/EBP-beta. J Invest Dermatol. 2010;130(7):1893–903. doi: 10.1038/jid.2010.45.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hebbard L, Steffen A, Zawadzki V, Fieber C, Howells N, Moll J, et al. CD44 expression and regulation during mammary gland development and function. J Cell Sci. 2000;113(Pt 14):2619–30.PubMedGoogle Scholar
  32. 32.
    Ni J, Cozzi PJ, Hao JL, Beretov J, Chang L, Duan W, et al. CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. Prostate. 2014;74(6):602–17. doi: 10.1002/pros.22775.CrossRefPubMedGoogle Scholar
  33. 33.
    Miletti-Gonzalez KE, Chen S, Muthukumaran N, Saglimbeni GN, Wu X, Yang J, et al. The CD44 receptor interacts with P-glycoprotein to promote cell migration and invasion in cancer. Cancer Res. 2005;65(15):6660–7. doi: 10.1158/0008-5472.CAN-04-3478.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu CM, Chang CH, Yu CH, Hsu CC, Huang LL. Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell Tissue Res. 2009;336(3):465–75. doi: 10.1007/s00441-009-0780-3.CrossRefPubMedGoogle Scholar
  35. 35.
    Misra S, Ghatak S, Toole BP. Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J Biol Chem. 2005;280(21):20310–5. doi: 10.1074/jbc.M500737200.CrossRefPubMedGoogle Scholar
  36. 36.
    Xu ZY, Tang JN, Xie HX, Du YA, Huang L, Yu PF, et al. 5-Fluorouracil chemotherapy of gastric cancer generates residual cells with properties of cancer stem cells. Int J Biol Sci. 2015;11(3):284–94. doi: 10.7150/ijbs.10248.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7(12):961–7. doi: 10.1038/nrc2254.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H. Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol. 2009;16(3):761–71. doi: 10.1245/s10434-008-0260-0.CrossRefPubMedGoogle Scholar
  39. 39.
    Sasaki K, Tsuno NH, Sunami E, Kawai K, Hongo K, Hiyoshi M, et al. Resistance of colon cancer to 5-fluorouracil may be overcome by combination with chloroquine, an in vivo study. Anticancer Drugs. 2012;23(7):675–82. doi: 10.1097/CAD.0b013e328353f8c7.CrossRefPubMedGoogle Scholar
  40. 40.
    Sasaki K, Tsuno NH, Sunami E, Tsurita G, Kawai K, Okaji Y, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010;10:370. doi: 10.1186/1471-2407-10-370.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Park JM, Huang S, Wu TT, Foster NR, Sinicrope FA. Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol Ther. 2013;14(2):100–7. doi: 10.4161/cbt.22954.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zaanan A, Park JM, Tougeron D, Huang S, Wu TT, Foster NR, et al. Association of beclin 1 expression with response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. Int J Cancer. 2015;137(6):1498–502. doi: 10.1002/ijc.29496.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000;275(50):39090–5. doi: 10.1074/jbc.M006198200.CrossRefPubMedGoogle Scholar
  44. 44.
    Levine B, Sinha S, Kroemer G. Bcl-2 family members—dual regulators of apoptosis and autophagy. Autophagy. 2008;4(5):600–6.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Graziani A, Gramaglia D, Cantley LC, Comoglio PM. The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem. 1991;266(33):22087–90.PubMedGoogle Scholar
  46. 46.
    Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002;16(23):3074–86. doi: 10.1101/gad.242602.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Klingbeil P, Marhaba R, Jung T, Kirmse R, Ludwig T, Zoller M. CD44 variant isoforms promote metastasis formation by a tumor cell-matrix cross-talk that supports adhesion and apoptosis resistance. Mol Cancer Res. 2009;7(2):168–79. doi: 10.1158/1541-7786.MCR-08-0207.CrossRefPubMedGoogle Scholar
  48. 48.
    Jung T, Gross W, Zoller M. CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. J Biol Chem. 2011;286(18):15862–74. doi: 10.1074/jbc.M110.208421.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Lin Lv
    • 1
  • Hai-Guang Liu
    • 1
  • Si-Yang Dong
    • 1
  • Fan Yang
    • 1
  • Qing-Xuan Wang
    • 1
  • Gui-Long Guo
    • 1
  • Yi-Fei Pan
    • 1
  • Xiao-Hua Zhang
    • 1
  1. 1.Department of OncologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations