Advertisement

Tumor Biology

, Volume 37, Issue 7, pp 8961–8972 | Cite as

miR-492G>C polymorphism (rs2289030) is associated with overall survival of hepatocellular carcinoma patients

  • Guopeng Yu
  • Qianyi Xiao
  • Xiao-Pin Ma
  • Xubo Chen
  • Zhuqing Shi
  • Lu-Yao Zhang
  • Haitao Chen
  • Pengyin Zhang
  • Dong-Lin Ding
  • Hui-Xing Huang
  • Hexige Saiyin
  • Tao-Yang Chen
  • Pei-Xin Lu
  • Neng-Jin Wang
  • Hongjie Yu
  • Jielin Sun
  • Carly Conran
  • S. Lilly Zheng
  • Jianfeng Xu
  • Long Yu
  • De-Ke Jiang
Original Article

Abstract

Single-nucleotide polymorphisms (SNPs) of microRNAs (miRNAs) are considered potential markers of cancer risk and prognosis in various cancers. In the current study, the primary aim is to determine whether the miR-492G>C polymorphism (rs2289030) altered hepatocellular carcinoma (HCC) prognosis. The SNP rs2289030 of miR-492 was genotyped using DNA from blood samples of 362 HCC patients that had undergone surgical resection of a HCC tumor. The associations between overall survival and demographic characteristics, clinical features, and the SNP rs2289030 were estimated using the Cox proportional hazards model. Results showed that patients who carried the CG genotype (P= 0.015, hazard ratio [HR] = 0.704, 95 % confidence interval [CI] 0.530–0.934) and CG+GG genotype (P = 0.011, HR = 0.703, 95 % CI 0.536–0.924) had significantly decreased risk of death compared to those with the CC genotype. Similar results were found in the multivariate analysis adjusted by tumor size and venous invasion. Further stratification analysis indicated that the effect of rs2289030 had more prominence in patients ≤50 years old and that reported ever using alcohol, male gender, a family history of HCC, being HbsAg or alpha fetoprotein (AFP) positive, differentiation I + II, presence of venous invasion or cirrhosis, multiple tumors, and pTNM stage I + II. Results from this study illustrate the potential use of miR-492 rs2289030 as a prognostic marker for HCC patients that have undergone a surgical resection of the tumor.

Keywords

Hepatocellular carcinoma Survival miRNA Genetic polymorphisms 

Notes

Acknowledgments

We thank all the patients who agreed to participate in this study. The study is supported by the National Natural Science Foundation of China (31100895 and 81472618 [to D.-K.J.]), Outstanding Young Scholar Project of Fudan University (to D.-K.J.), and an intramural research grant for new young teachers from Fudan University (to D.-K.J.), an intramural research grant for promotion of the scientific research ability of young teachers from Fudan University (to D.-K.J.), an intramural research grant from Huashan Hospital, Fudan University (to J.X.), an intramural research grant from Fudan-VARI Center for Genetic Epidemiology, Fudan University (to J.X.)., the Research Fund of the State Key Laboratory of Genetic Engineering, Fudan University (to L.Y. and J.X.), and the Ellrodt-Schweighauser Family Chair of Cancer Genomic Research of NorthShore University HealthSystem (J. X.).

Compliance with ethical standards

Conflicts of interest

None

Supplementary material

13277_2015_4752_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)

References

  1. 1.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015. doi: 10.3322/caac.21262.PubMedGoogle Scholar
  2. 2.
    Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7(8):448–58. doi: 10.1038/nrgastro.2010.100.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhu AX. Molecularly targeted therapy for advanced hepatocellular carcinoma in 2012: current status and future perspectives. Semin Oncol. 2012;39(4):493–502. doi: 10.1053/j.seminoncol.2012.05.014.CrossRefPubMedGoogle Scholar
  4. 4.
    Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13(6):e249–58. doi: 10.1016/S1470-2045(12)70073-6.CrossRefPubMedGoogle Scholar
  5. 5.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. doi: 10.1038/nrc1997.CrossRefPubMedGoogle Scholar
  6. 6.
    Bartel B. MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol. 2005;12(7):569–71. doi: 10.1038/nsmb0705-569.CrossRefPubMedGoogle Scholar
  7. 7.
    Tao K, Yang J, Guo Z, Hu Y, Sheng H, Gao H, et al. Prognostic value of miR-221-3p, miR-342-3p and miR-491-5p expression in colon cancer. Am J Transl Res. 2014;6(4):391–401.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wu C, Li M, Hu C, Duan H. Prognostic role of microRNA polymorphisms in patients with advanced esophageal squamous cell carcinoma receiving platinum-based chemotherapy. Cancer Chemother Pharmacol. 2014;73(2):335–41. doi: 10.1007/s00280-013-2364-x.CrossRefPubMedGoogle Scholar
  9. 9.
    Pardini B, Rosa F, Naccarati A, Vymetalkova V, Ye Y, Wu X, et al. Polymorphisms in microRNA genes as predictors of clinical outcomes in colorectal cancer patients. Carcinogenesis. 2015;36(1):82–6. doi: 10.1093/carcin/bgu224.CrossRefPubMedGoogle Scholar
  10. 10.
    Lin M, Gu J, Eng C, Ellis LM, Hildebrandt MA, Lin J, et al. Genetic polymorphisms in MicroRNA-related genes as predictors of clinical outcomes in colorectal adenocarcinoma patients. Clin Cancer Res. 2012;18(14):3982–91. doi: 10.1158/1078-0432.CCR-11-2951.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    George GP, Mittal RD. MicroRNAs: potential biomarkers in cancer. Indian J Clin Biochem. 2010;25(1):4–14. doi: 10.1007/s12291-010-0008-z.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kupcinskas J, Wex T, Link A, Leja M, Bruzaite I, Steponaitiene R, et al. Gene polymorphisms of micrornas in Helicobacter pylori-induced high risk atrophic gastritis and gastric cancer. PLoS One. 2014;9(1):e87467. doi: 10.1371/journal.pone.0087467.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wei WJ, Wang YL, Li DS, Wang Y, Wang XF, Zhu YX, et al. Association study of single nucleotide polymorphisms in mature microRNAs and the risk of thyroid tumor in a Chinese population. Endocrine. 2015;49(2):436–44. doi: 10.1007/s12020-014-0467-8.CrossRefPubMedGoogle Scholar
  14. 14.
    Xu T, Zhu Y, Wei QK, Yuan Y, Zhou F, Ge YY, et al. A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma. Carcinogenesis. 2008;29(11):2126–31. doi: 10.1093/carcin/bgn195.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang R, Zhang J, Ma Y, Chen L, Guo S, Zhang X, et al. Association study of miR149 rs2292832 and miR608 rs4919510 and the risk of hepatocellular carcinoma in a large-scale population. Mol Med Rep. 2014;10(5):2736–44. doi: 10.3892/mmr.2014.2536.PubMedGoogle Scholar
  16. 16.
    Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 2008;68(7):2530–7. doi: 10.1158/0008-5472.CAN-07-5991.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee HC, Kim JG, Chae YS, Sohn SK, Kang BW, Moon JH, et al. Prognostic impact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J Cancer Res Clin Oncol. 2010;136(7):1073–8. doi: 10.1007/s00432-009-0754-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Hu X, Schwarz JK, Lewis Jr JS, Huettner PC, Rader JS, Deasy JO, et al. A microRNA expression signature for cervical cancer prognosis. Cancer Res. 2010;70(4):1441–8. doi: 10.1158/0008-5472.CAN-09-3289.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lin M, Chen W, Huang J, Gao H, Ye Y, Song Z, et al. MicroRNA expression profiles in human colorectal cancers with liver metastases. Oncol Rep. 2011;25(3):739–47. doi: 10.3892/or.2010.1112.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, Zheng J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009;25(1):13–20. doi: 10.1007/s00381-008-0701-x.CrossRefPubMedGoogle Scholar
  21. 21.
    Hui AB, Lin A, Xu W, Waldron L, Perez-Ordonez B, Weinreb I, et al. Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma. Clin Cancer Res. 2013;19(8):2154–62. doi: 10.1158/1078-0432.CCR-12-3572.CrossRefPubMedGoogle Scholar
  22. 22.
    Shen F, Cai WS, Feng Z, Li JL, Chen JW, Cao J, et al. MiR-492 contributes to cell proliferation and cell cycle of human breast cancer cells by suppressing SOX7 expression. Tumour Biol. 2015;36(3):1913–21. doi: 10.1007/s13277-014-2794-z.CrossRefPubMedGoogle Scholar
  23. 23.
    von Frowein J, Pagel P, Kappler R, von Schweinitz D, Roscher A, Schmid I. MicroRNA-492 is processed from the keratin 19 gene and up-regulated in metastatic hepatoblastoma. Hepatology. 2011;53(3):833–42. doi: 10.1002/hep.24125.CrossRefGoogle Scholar
  24. 24.
    Gaedcke J, Grade M, Camps J, Sokilde R, Kaczkowski B, Schetter AJ, et al. The rectal cancer microRNAome—microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18(18):4919–30. doi: 10.1158/1078-0432.CCR-12-0016.CrossRefPubMedGoogle Scholar
  25. 25.
    Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 2008;123(2):372–9. doi: 10.1002/ijc.23501.CrossRefPubMedGoogle Scholar
  26. 26.
    Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 2008;68(15):6416–24. doi: 10.1158/0008-5472.CAN-07-6110.CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang J, Zhang Y, Yu C, Li Z, Pan Y, Sun C. MicroRNA-492 expression promotes the progression of hepatic cancer by targeting PTEN. Cancer Cell Int. 2014;14(1):95. doi: 10.1186/s12935-014-0095-7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60. doi: 10.1038/sj.emboj.7600385.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402. doi: 10.1038/nrc2867.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29(10):1963–6. doi: 10.1093/carcin/bgn172.CrossRefPubMedGoogle Scholar
  31. 31.
    Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269–74. doi: 10.1073/pnas.0802682105.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Okubo M, Tahara T, Shibata T, Yamashita H, Nakamura M, Yoshioka D, et al. Association between common genetic variants in pre-microRNAs and gastric cancer risk in Japanese population. Helicobacter. 2010;15(6):524–31. doi: 10.1111/j.1523-5378.2010.00806.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Xu B, Feng NH, Li PC, Tao J, Wu D, Zhang ZD, et al. A functional polymorphism in Pre-miR-146a gene is associated with prostate cancer risk and mature miR-146a expression in vivo. Prostate. 2010;70(5):467–72. doi: 10.1002/pros.21080.PubMedGoogle Scholar
  34. 34.
    Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118(7):2600–8. doi: 10.1172/JCI34934.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Qiu F, Yang L, Zhang L, Yang X, Yang R, Fang W, et al. Polymorphism in mature microRNA-608 sequence is associated with an increased risk of nasopharyngeal carcinoma. Gene. 2015;565(2):180–6. doi: 10.1016/j.gene.2015.04.008.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2016

Authors and Affiliations

  • Guopeng Yu
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
  • Qianyi Xiao
    • 4
  • Xiao-Pin Ma
    • 1
  • Xubo Chen
    • 1
  • Zhuqing Shi
    • 1
    • 2
    • 3
    • 4
  • Lu-Yao Zhang
    • 1
  • Haitao Chen
    • 1
    • 2
    • 3
    • 4
  • Pengyin Zhang
    • 1
    • 2
    • 3
    • 4
  • Dong-Lin Ding
    • 1
  • Hui-Xing Huang
    • 1
  • Hexige Saiyin
    • 1
  • Tao-Yang Chen
    • 8
  • Pei-Xin Lu
    • 8
  • Neng-Jin Wang
    • 8
  • Hongjie Yu
    • 1
    • 2
    • 3
    • 4
  • Jielin Sun
    • 7
  • Carly Conran
    • 9
  • S. Lilly Zheng
    • 7
    • 9
  • Jianfeng Xu
    • 1
    • 2
    • 3
    • 4
    • 5
    • 9
  • Long Yu
    • 1
    • 10
  • De-Ke Jiang
    • 1
    • 2
    • 3
    • 4
    • 7
    • 9
  1. 1.State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life SciencesFudan UniversityShanghaiChina
  2. 2.Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life SciencesFudan UniversityShanghaiChina
  3. 3.Center for Genetic Epidemiology, School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Center for Genetic Translational Medicine and Prevention, School of Public HealthFudan UniversityShanghaiChina
  5. 5.Fudan Institute of Urology, Huashan HospitalFudan UniversityShanghaiChina
  6. 6.Department of Urology, Xinhua Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
  7. 7.Center for Cancer Genomics, Wake Forest University School of MedicineWinston-SalemUSA
  8. 8.Qidong Liver Cancer Institute, Qidong People’s HospitalQidongChina
  9. 9.Center for Genomic Cancer Research, NorthShore University HealthSystemThe University of ChicagoChicagoUSA
  10. 10.Institute of Biomedical ScienceFudan UniversityShanghaiChina

Personalised recommendations