Skip to main content
Log in

Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles

  • Original Article
  • Published:
Tumor Biology

Abstract

The immunosuppressive factors in tumor microenvironment enhance tumor growth and suppress anti-tumor immune responses. Adenosine is an important immunosuppressive factor which can be secreted by both tumor and immune cells trough action of two cell surface ecto-nucleotidase molecules CD39 and CD73. Blocking the adenosine generating molecules has emerged as an effective immunotherapeutic approach for treatment of cancer. In this study, CD73-siRNA encapsulated into chitosan-lactate (ChLa) nanoparticles (NPs) was employed to suppress the expression of CD73 molecule on 4T1 breast tumor cells, in vitro. ChLa NPs were generated through ionic gelation of ChLa by tripolyphosphate (TPP). Small interfering RNA (SiRNA)-loaded NPs had about 100 nm size with a polydispersive index below 0.3 and a zeta potential about 13. Our results showed that ChLa NPs with Ch 50 kDa exhibit the best physicochemical features with the high siRNA encapsulation capacity. Synthesized NPs were able to fully bind with siRNA, protect them against serum and heparin degradation, and promote the transfection process. While the NPs exhibited low toxicity during 72 h cell culture, the transfection of Ch-plasmid expressing green fluorescent protein (pEGFP) NPs was efficient in 4T1 cells with a transfection rate of 53.6 % as detected by flow cytometry. In addition, CD73-siRNA-loaded ChLa NPs could efficiently suppress the expression of CD73 as assayed by real-time polymerase chain reaction and flow cytometry. As a conclusion, CD73-siRNA-loaded ChLa NPs may be considered as a promising therapeutic tool for cancer therapy; however, further in vivo investigations are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yousefi M, Movassaghpour AA, Shamsasenjan K, Ghalamfarsa G, Sadreddini S, Jadidi-Niaragh F, et al. The skewed balance between tregs and th17 in chronic lymphocytic leukemia. Future Oncol. 2015;11:1567–82.

    Article  CAS  PubMed  Google Scholar 

  2. Jadidi-Niaragh F, Ghalamfarsa G, Yousefi M, Tabrizi MH, Shokri F. Regulatory t cells in chronic lymphocytic leukemia: implication for immunotherapeutic interventions. Tumor Biol. 2013;34:2031–9.

    Article  CAS  Google Scholar 

  3. Jadidi-Niaragh F, Yousefi M, Memarian A, Hojjat-Farsangi M, Khoshnoodi J, Razavi SM, et al. Increased frequency of cd8+ and cd4+ regulatory t cells in chronic lymphocytic leukemia: association with disease progression. Cancer Investig. 2013;31:121–31.

    Article  CAS  Google Scholar 

  4. Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M. The immunobiology of myeloid-derived suppressor cells in cancer. Tumor Biol. 2015;1–20.

  5. Yazdani Y, Mohammadnia-Afrouzi M, Yousefi M, Anvari E, Ghalamfarsa G, Hasannia H, et al. Myeloid-derived suppressor cells in b cell malignancies. Tumor Biol. 2015;1–15.

  6. Raggi C, Mousa H, Correnti M, Sica A, Invernizzi P. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene. 2015.

  7. Ghalamfarsa G, Hadinia A, Yousefi M, Jadidi-Niaragh F. The role of natural killer t cells in b cell malignancies. Tumor Biol. 2013;34:1349–60.

    Article  CAS  Google Scholar 

  8. Jadidi-Niaragh F, Jeddi-Tehrani M, Ansaripour B, Razavi SM, Sharifian RA, Shokri F. Reduced frequency of nkt-like cells in patients with progressive chronic lymphocytic leukemia. Med Oncol. 2012;29:3561–9.

    Article  CAS  PubMed  Google Scholar 

  9. Ding T, Yan F, Cao S, Ren X. Regulatory b cell: new member of immunosuppressive cell club. Hum Immunol. 2015.

  10. Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: an updated review. Artificial cells, nanomedicine, and biotechnology. 2015;1–11.

  11. Haji-Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. Car-modified t-cell therapy for cancer: an updated review. Artif Cells Nanomedicine Biotechnol. 2015;1–11.

  12. Young A, Mittal D, Stagg J, Smyth MJ. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 2014;4:879–88.

    Article  CAS  PubMed  Google Scholar 

  13. Gao Z-w, Dong K, Zhang H-z: The roles of cd73 in cancer. BioMed Res Int 2014;2014

  14. Zhang B. Cd73: a novel target for cancer immunotherapy. Cancer Res. 2010;70:6407–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artif Cells Nanomedicine Biotechnol. 2015;1–11.

  16. Tahamtan A, Tabarraei A, Moradi A, Dinarvand M, Kelishadi M, Ghaemi A, et al. Chitosan nanoparticles as a potential nonviral gene delivery for hpv-16 e7 into mammalian cells. Artif Cells Nanomedicine Biotechnol. 2014;1–7.

  17. Mollarazi E, Jalilian AR, Johari‐daha F, Atyabi F. Development of 153sm-folate-polyethyleneimine-conjugated chitosan nanoparticles for targeted therapy. J Label Compd Radiopharm. 2015;58:327–35.

    Article  CAS  Google Scholar 

  18. Talaei F, Azizi E, Dinarvand R, Atyabi F. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against egfr in t47d breast cancer cells. Int J Nanomedicine. 2011;6:1963.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Marine drugs. 2015;13:5156–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Molinaro R, Wolfram J, Federico C, Cilurzo F, Di Marzio L, Ventura CA, et al. Polyethylenimine and chitosan carriers for the delivery of rna interference effectors. Expert Opin Drug Del. 2013;10:1653–68.

    Article  CAS  Google Scholar 

  21. Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002;53:57–63.

    Article  CAS  PubMed  Google Scholar 

  22. Thanou M, Florea B, Geldof M, Junginger H, Borchard G. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials. 2002;23:153–9.

    Article  CAS  PubMed  Google Scholar 

  23. Corsi K, Chellat F, Yahia LH, Fernandes JC. Mesenchymal stem cells, mg63 and hek293 transfection using chitosan-DNA nanoparticles. Biomaterials. 2003;24:1255–64.

    Article  CAS  PubMed  Google Scholar 

  24. Wan L, Hu F, Yuan H. study of the uptake of chitosan oligosaccharide nanoparticles by a549 cells]. Yao xue xue bao. Acta Pharm Sin. 2004;39:227–31.

    CAS  Google Scholar 

  25. Dastan T, Turan K. In vitro characterization and delivery of chitosan-DNA microparticles into mammalian cells. J Pharm Pharm Sci. 2004;7:205–14.

    CAS  PubMed  Google Scholar 

  26. Zhao X, Yu S-B, Wu F-L, Mao Z-B, Yu C-L. Transfection of primary chondrocytes using chitosan-pegfp nanoparticles. J Control Release. 2006;112:223–8.

    Article  CAS  PubMed  Google Scholar 

  27. Weecharangsan W, Opanasopit P, Ngawhirunpat T, Apirakaramwong A, Rojanarata T, Ruktanonchai U, et al. Evaluation of chitosan salts as non-viral gene vectors in cho-k1 cells. Int J Pharm. 2008;348:161–8.

    Article  CAS  PubMed  Google Scholar 

  28. Weecharangsan W, Opanasopit P, Ngawhirunpat T, Rojanarata T, Apirakaramwong A. Chitosan lactate as a nonviral gene delivery vector in cos-1 cells. AAPS PharmSciTech. 2006;7:E74–9.

    Article  PubMed Central  Google Scholar 

  29. Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-phema core-shell nanoparticles. Nanomedicine: Nanotechnol, Biol Med. 2009;5:208–15.

    CAS  Google Scholar 

  30. Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F. Discriminated effects of thiolated chitosan-coated pmma paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine: Nanotechnol, Biol Med. 2010;6:689–97.

    CAS  Google Scholar 

  31. Takedachi M, Qu D, Ebisuno Y, Oohara H, Joachims ML, McGee ST, et al. Cd73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J Immunol. 2008;180:6288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yegutkin GG, Marttila‐Ichihara F, Karikoski M, Niemelä J, Laurila JP, Elima K, et al. Altered purinergic signaling in cd73‐deficient mice inhibits tumor progression. Eur J Immunol. 2011;41:1231–41.

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, et al. Cd73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest. 2011;121:2371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhi X, Chen S, Zhou P, Shao Z, Wang L, Ou Z, et al. Rna interference of ecto-5′-nucleotidase (cd73) inhibits human breast cancer cell growth and invasion. Clin Exp Metastasis. 2007;24:439–48.

    Article  CAS  PubMed  Google Scholar 

  35. Stagg J, Beavis PA, Divisekera U, Liu MC, Möller A, Darcy PK, et al. Cd73-deficient mice are resistant to carcinogenesis. Cancer Res. 2012;72:2190–6.

    Article  CAS  PubMed  Google Scholar 

  36. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, et al. Anti-cd73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci. 2010;107:1547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, et al. Cd73 on tumor cells impairs antitumor t-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res. 2010;70:2245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, et al. Cd73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 2011;71:2892–900.

    Article  CAS  PubMed  Google Scholar 

  39. Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC, et al. Crucial role for ecto-5′-nucleotidase (cd73) in vascular leakage during hypoxia. J Exp Med. 2004;200:1395–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang L, Tang S, Wang Y, Xu S, Yu J, Zhi X, et al. Ecto-5′-nucleotidase (cd73) promotes tumor angiogenesis. Clin Exp Metastasis. 2013;30:671–80.

    Article  CAS  PubMed  Google Scholar 

  41. Forte G, Sorrentino R, Montinaro A, Luciano A, Adcock IM, Maiolino P, et al. Inhibition of cd73 improves b cell-mediated anti-tumor immunity in a mouse model of melanoma. J Immunol. 2012;189:2226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhi X, Wang Y, Zhou X, Yu J, Jian R, Tang S, et al. Rnai-mediated cd73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci. 2010;101:2561–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kiang T, Wen J, Lim HW, Leong KW. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials. 2004;25:5293–301.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank, Maryam Ajami, Zahra Mirzaie, and Reyhaneh Varshochian for their excellent technical support. This study was supported in part by a grant from Tehran University of Medical Sciences (grant number: 24869).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fatemeh Atyabi or Fazel Shokri.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadidi-Niaragh, F., Atyabi, F., Rastegari, A. et al. Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumor Biol. 37, 8403–8412 (2016). https://doi.org/10.1007/s13277-015-4732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4732-0

Keywords

Navigation