Tumor Biology

, Volume 37, Issue 6, pp 8259–8270 | Cite as

Expression of microRNA-452 via adenoviral vector inhibits non-small cell lung cancer cells proliferation and metastasis

  • Yongsheng Zhang
  • Lu Han
  • Jian Pang
  • Yang Wang
  • Fan Feng
  • Qiyu Jiang
Original Article


The microRNA miR-452 has been shown to function as a tumor suppressor. However, the cellular mechanism and potential application of miR-452-mediated cancer suppression remain great unknown. This study aims to identify how miR-452 acts in regulating non-small cell lung cancer (NSCLC) proliferation and metastasis. Expression of miR-452 via adenoviral (Ad) vector inhibits the proliferation, invasion, and migration of NSCLC cells A549 or H460. Our data also shows that miR-452 down-regulates the expression of Bmi-1 as well as pro-survival or anti-apoptosis regulators Survivin, cIAP-1, and cIAP-2. By such gene interference, miR-452 modulates NSCLC cell epithelial–mesenchymal transition (EMT) and further disrupts their migration and invasion. Moreover, miR-452 blocks the activation of PI3K/AKT pathway, which is also required for EMT process. These data reveal that miR-452 treatment could be a novel target or strategy for NSCLC treatment.


NSCLC miR-452 Bmi-1 Metastasis EMT PI3K/AKT signaling pathway 



The authors thank Dr. Yu Cao in Medical College of Georgia, Georgia Regents University, for his helpful advices.

Author contributions

Conceived and designed the experiments: YZ JP. Performed the experiments: JP YW FF. Analyzed the data: QJ. Contributed reagents/materials/analysis tools: JP. Wrote the paper: YZ FF.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Herbst RS, Heymach JV, Lippman SM. Molecular origins of cancer: lung cancer. N Engl J Med. 2008;359:1367–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Yoshida T, Zhang G, Smith MA, et al. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Clin Cancer Res. 2014;20:4059–74.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kang J, Kim E, Kim W, et al. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem. 2013;288:27343–57.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cullen BR. Viral and cellular messenger RNA targets of viral microRNAs. Nature. 2009;457:421–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Qian B, Nag SA, Su Y, et al. miRNAs in cancer prevention and treatment and as molecular targets for natural product anticancer agents. Curr Cancer Drug Targets. 2013;13:519–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Xu X, Fan Z, Kang L, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest. 2013;123:630–45.PubMedPubMedCentralGoogle Scholar
  7. 7.
    He H, Wang L, Zhou W, et al. MicroRNA expression profiling in clear cell renal cell carcinoma: identification and functional validation of key miRNAs. PLoS One. 2015;10:e0125672.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu C, Kelnar K, Vlassov AV, et al. Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7. Cancer Res. 2012;72:3393–404.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu L, Chen K, Wu J, et al. Downregulation of miR-452 promotes stem-like traits and tumorigenicity of gliomas. Clin Cancer Res. 2013;19:3429–38.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hu Q, Gong JP, Li J, et al. Down-regulation of miRNA-452 is associated with adriamycin-resistance in breast cancer cells. Asian Pac J Cancer Prev. 2014;15:5137–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Breuer RH, Snijders PJ, Sutedja GT, et al. Expression of the p16(INK4a) gene product, methylation of the p16(INK4a) promoter region and expression of the polycomb-group gene BMI-1 in squamous cell lung carcinoma and premalignant endobronchial lesions. Lung Cancer. 2005;48:299–306.CrossRefPubMedGoogle Scholar
  12. 12.
    Vrzalikova K, Skarda J, Ehrmann J, et al. Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients: a tissue microarray study. J Cancer Res Clin Oncol. 2008;134:1037–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Shien K, Toyooka S, Ichimura K, et al. Prognostic impact of cancer stem cell-related markers in non-small cell lung cancer patients treated with induction chemoradiotherapy. Lung Cancer. 2012;77:162–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Hu J, Liu YL, Piao SL, et al. Expression patterns of USP22 and potential targets BMI-1, PTEN, p-AKT in non-small-cell lung cancer. Lung Cancer. 2012;77:593–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuang BH, Zhang MQ, Xu LH, et al. Proline-rich tyrosine kinase 2 and its phosphorylated form pY881 are novel prognostic markers for non-small-cell lung cancer progression and patients’ overall survival. Br J Cancer. 2013;109:1252–63.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiong D, Ye Y, Fu Y, et al. Bmi-1 expression modulates non-small cell lung cancer progression. Cancer Biol Ther. 2015;16:756–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    He Z, Xia Y, Pan C, et al. Up-regulation of MiR-452 inhibits metastasis of non-small cell lung cancer by regulating BMI1. Cell Physiol Biochem. 2015;37:387–98.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang F, Feng F, Yang PX, et al. Four-and-a-half-LIM protein 1 down-regulates estrogen receptor α activity through repression of AKT phosphorylation in human breast cancer cell. Int J Biochem Cell Biol. 2012;44:320–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Cui L, Li M, Feng F, et al. MEIS1 functions as a potential AR negative regulator. Exp Cell Res. 2014;328:58–68.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang P, Ma X, Song E, et al. Tubulin cofactor A functions as a novel positive regulator of ccRCC progression, invasion and metastasis. Int J Cancer. 2013;133:2801–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Lu Y, Feng F, Yang Y, et al. LINE-1 ORF-1p functions as a novel androgen receptor co-activator and promotes the growth of human prostatic carcinoma cells. Cell Signal. 2013;25:479–89.CrossRefPubMedGoogle Scholar
  22. 22.
    Chen Y, Feng F, Gao XD, et al. MiRNA153 reduces effects of chemotherapeutic agents or small molecular kinase inhibitor in HCC cells. Curr Cancer Drug Targets. 2015;15:176–87.CrossRefPubMedGoogle Scholar
  23. 23.
    Egloff AM, Rothstein ME, Seethala R, et al. Cross-talk between estrogen receptor and epidermal growth factor receptor in head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15:6529–40.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yang Q, Feng F, Zhang F, et al. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell. Cell Signal. 2013;25:2652–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Feng F, Lu YY, Zhang F, et al. Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma. World J Gastroenterol. 2013;19:1068–78.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang Y, Guan Y, Wang F, et al. Bmi-1 regulates self-renewal, proliferation and senescence of human fetal neural stem cells in vitro. Neurosci Lett. 2010;476:74–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Choi B, Chun E, Kim SY, et al. Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. Am J Pathol. 2012;180:351–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Bhattacharyya J, Mihara K, Kitanaka A, et al. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eradicating chemotherapy-resistant B-cell lymphoma cells overexpressing survivin induced by BMI-1. Blood Cancer J. 2012;2:e75.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Song LB, Li J, Liao WT, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest. 2009;119:3626–36.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guo BH, Feng Y, Zhang R, et al. Bmi-1 promotes invasion and metastasis, and its elevated expression is correlated with an advanced stage of breast cancer. Mol Cancer. 2011;10:10.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mihic-Probst D, Kuster A, Kilgus S, et al. Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int J Cancer. 2007;121:1764–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Chang B, Li S, He Q, et al. Deregulation of Bmi-1 is associated with enhanced migration, invasion and poor prognosis in salivary adenoid cystic carcinoma. Biochim Biophys Acta. 1840;2014:3285–91.Google Scholar
  35. 35.
    Yu Q, Su B, Liu D, et al. Antisense RNA-mediated suppression of Bmi-1 gene expression inhibits the proliferation of lung cancer cell line A549. Oligonucleotides. 2007;17:327–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007;178:437–51.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pon YL, Zhou HY, Cheung AN, et al. p70 S6 kinase promotes epithelial to mesenchymal transition through snail induction in ovarian cancer cells. Cancer Res. 2008;68:6524–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Smith AP, Verrecchia A, Fagà G, et al. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009;28:422–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu L, Qiu M, Tan G, et al. miR-200c inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of BMI-1 and E2F3. J Transl Med. 2014;12:305.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yuan W, Yuan Y, Zhang T, et al. Role of Bmi-1 in regulation of ionizing irradiation-induced epithelial-mesenchymal transition and migration of breast cancer cells. PLoS One. 2015;10:e0118799.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Du R, Xia L, Ning X, et al. Hypoxia-induced Bmi1 promotes renal tubular epithelial cell-mesenchymal transition and renal fibrosis via PI3K/Akt signal. Mol Biol Cell. 2014;25:2650–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kuo S, Blair K, Rahimy E, et al. Salinomycin induces cell death and differentiation in head and neck squamous cell carcinoma stem cells despite activation of epithelial-mesenchymal transition and Akt. BMC Cancer. 2012;12:556.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yongsheng Zhang
    • 1
  • Lu Han
    • 2
  • Jian Pang
    • 1
  • Yang Wang
    • 1
  • Fan Feng
    • 3
  • Qiyu Jiang
    • 4
  1. 1.Department of Respiratory DiseasesThe 463 Hospital of Chinese PLAShenyangChina
  2. 2.Unit II, Department of Medical OncologyThe General Hospital of Chinese PLABeijingChina
  3. 3.Department of PharmacyGeneral Hospital of Shenyang Military Command AreaShenyangChina
  4. 4.Center of Technical and ServiceThe 302nd Hospital of Chinese PLABeijingChina

Personalised recommendations